Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Anh
Xem chi tiết
missing you =
14 tháng 11 2021 lúc 21:39

\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)

\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)

\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)

\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)

\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)

\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)

\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

Đặng Quốc Khánh
Xem chi tiết
missing you =
12 tháng 2 2022 lúc 23:01

\(a,\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m^2\\x-my=m+1\end{matrix}\right.\)

\(\Leftrightarrow m^2x-x=2m^2-m-1\Leftrightarrow x\left(m^2-1\right)=2m^2-m-1\)

\(ycầuđềbài\Leftrightarrow m^2-1\ne0\Leftrightarrow m\ne\pm-1\)

\(b,\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2-m-1}{m^2-1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{m^2-1}=\dfrac{2m+1}{m+1}=2+\dfrac{-2}{m+1}\\y=mx-2m=\dfrac{m\left(2m+1\right)-2m^2-2m}{m+1}=\dfrac{-m}{m+1}=-1+\dfrac{1}{m+1}\end{matrix}\right.\)

\(\left(x;y\right)\in Z\Leftrightarrow\left\{{}\begin{matrix}m\ne\pm1\\m+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\\m+1\inƯ\left(1\right)=\left\{1;-1\right\}\end{matrix}\right.\)

\(\Rightarrow m=0;m=-2\)

Limited Edition
Xem chi tiết
Trần Minh Hoàng
18 tháng 1 2021 lúc 12:19

Với m = 0 ta có hpt \(\left\{{}\begin{matrix}2y=1\\2x=-1\end{matrix}\right.\). HPT này không có nghiệm nguyên.

Xét \(m\neq 0\).

Để hpt có nghiệm duy nhất thì: \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\).

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.\Rightarrow\left(m^2-4\right)y=2m^2-3m-2\).

\(\Rightarrow y=\dfrac{2m^2-3m-2}{m^2-4}=\dfrac{2m+1}{m+2}\).

Từ đó ta có \(x=\dfrac{m+1-\dfrac{2\left(2m+1\right)}{m+2}}{m}=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\).

Vậy m là các số sao cho \(\dfrac{2m+1}{m+2}\) là số nguyên (Do \(\dfrac{2m+1}{m+2}-\dfrac{m-1}{m+2}=1\) là số nguyên).

 

OoO Min min OoO
Xem chi tiết
trần vũ hoàng phúc
Xem chi tiết

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

Đặng Quốc Khánh
Xem chi tiết
Akai Haruma
12 tháng 2 2022 lúc 22:49

Lời giải:

$x+y=1\Leftrightarrow y=1-x$. Thay vô pt $(2)$:

$2x-(1-x)=m-1$

$\Leftrightarrow 3x-1=m-1$

$\Leftrightarrow 3x=m(*)$

Để pt ban đầu có nghiệm $x,y$ nguyên duy nhất thì pt $(*)$ phải có nghiệm nguyên $x$ duy nhất 

Điều này xảy ra khi $m=3k$ với $k\in\mathbb{Z}$

Khi đó: $3x=3k\Leftrightarrow x=k$

$y=1-x=1-k$

Vậy để hpt có nghiệm thỏa đề thì $m=3k$ với $k\in\mathbb{Z}$

Lizy
Xem chi tiết

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)

=>\(5⋮m+2\)

=>\(m+2\in\left\{1;-1;5;-5\right\}\)

=>\(m\in\left\{-1;-3;3;-7\right\}\)

Jack Viet
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
8 tháng 5 2021 lúc 10:25

\(\left\{{}\begin{matrix}2mx+y=1\\2x-\left(2m+1\right)y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\left(2m+1\right)y+y=1\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2y+my+y-1=0\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(2m^2+m+1\right)=1\left(1\right)\\2x=\left(2m+1\right)y-1\end{matrix}\right.\)

Để pt có nghiệm duy nhất tức là pt (1) có nghiệm duy nhất

\(\Leftrightarrow2m^2+m+1\ne0\Leftrightarrow m^2+\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) ( luôn đúng )

Vậy với mọi giá trị m thỏa mãn là pt có nghiệm duy nhất.