Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Anh Gamer
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 12 2021 lúc 22:49

Câu 1:

\(ĐK:x\ge2\)

Áp dụng BĐT cauchy ta có:

\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)

Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)

\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)

Nguyễn Hoàng Minh
23 tháng 12 2021 lúc 22:55

Câu 2:

\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy \(\left(x;y\right)=\left(4;2\right)\)

Câu 3:

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)

Đặt \(xy=t\)

\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)

PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)

\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)

Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)

Nguyễn Hoàng Minh
23 tháng 12 2021 lúc 23:04

Câu 4: \(a^2+b^2=4a+bc+540\)

c đâu ra vậy?

Câu 5:

Thay \(x=3\Leftrightarrow P\left(2\right)+2P\left(2\right)=3^2\Leftrightarrow P\left(2\right)=3\)

Thay \(x=\sqrt{2013}\)

\(\Leftrightarrow P\left(\sqrt{2013}-1\right)+2P\left(2\right)=\left(\sqrt{2013}\right)^2=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)+6=2013\\ \Leftrightarrow P\left(\sqrt{2013}-1\right)=2007\)

ghdoes
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:38

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

Ngoc Nhi Tran
Xem chi tiết
Trúc Giang
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết

\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)

\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)

\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=x-y+y-z+z-x\)

\(=0\)

Nguyễn Đoàn Phương Anh
Xem chi tiết
Đức Mai Văn
Xem chi tiết
Huyền
25 tháng 6 2019 lúc 10:18

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

tthnew
3 tháng 11 2019 lúc 9:24

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

Khách vãng lai đã xóa
Xuân Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2022 lúc 15:31

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)