bài 1: cho hàm số y=\(\frac{2x-1}{x+1}\). Tìm tọa độ điểm thuộc đồ thị có tung độ bằng -1
bài 2: cho hình chữ nhật ABCD, có độ dài cạnh AB=a; BC=2a. Khi đó \(\left|\overrightarrow{DC}+2\overrightarrow{BC}\right|\) bằng ?
bài 3: tìm nghiệm S của bpt :\(\sqrt{-x^2+2x+24}\le2\left(x+1\right)\)
bài 4 tính P= cos\(\left(\frac{\pi}{2}-\alpha\right)+2sin\left(2018\pi+\alpha\right)\). Biết \(sin\alpha=\frac{-1}{2}\) và \(\frac{-\pi}{2}< \alpha< 0\)
Bài 1 : cho \(\overrightarrow{u}=\overrightarrow{a}+3\overrightarrow{b}\)vuông góc với \(\overrightarrow{v}=7\overrightarrow{a}-5\overrightarrow{b}\)và \(\overrightarrow{x}=\overrightarrow{a}-4\overrightarrow{b}\)vuông góc với\(\overrightarrow{y}=7\overrightarrow{a}-2\overrightarrow{b}\). Khi đó góc giữa hai vectơ \(\overrightarrow{a}\)và \(\overrightarrow{b}\)là ?
Bài 2 : Cho ΔABC có diện tích S=\(\frac{3}{2}\), hai đỉnh A(2,-3) và B(3.-2) . Trọng tâm G năm trên đường thẳng 3x-y-8=0 . Tìm tọa độ điểm C ?
Bài 3: Cho cá số dương x,y,z thỏa mãn xyz=1 . Khi đó giá trị nhỏ nhất của biểu thức
P=\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+x^3+z^3}}{xz}\) là bao nhiêu ?
Bài 4 : Cho (H) là đồ thị hàm số f(x)= \(\sqrt{x^2-10x+25}+\left|x+5\right|\)Xét các mệnh đề sau :
I. (H) đối xứng qua trục Oy II. (H) đối xứng qua trục Ox
III. (H) không có tâm đối xứng
Mệnh đề nào đúng , mệnh đề nào sai ? Giải thích tại sao ?
Bài 4 : Hãy liệt kê các phần tử của tập hợp : X={ x∈ R /\(x^2+x+1\)=0 }
Cho \(\overrightarrow{a}=\left(3;4\right)\), \(\overrightarrow{b}\)\(=\left(7;1\right)\). Tính:
a) \(\overrightarrow{a},\overrightarrow{b}\) và hệ số đo góc \(\left(\overrightarrow{a},\overrightarrow{b}\right)\)
b) Tìm tọa độ \(\overrightarrow{c}\)biết \(\overrightarrow{a}\overrightarrow{c}=15\) và \(\overrightarrow{b}\overrightarrow{c}=10\)
1,Tìm GTLN và GTNN của hàm số:
a, \(y=\left(\frac{2x}{1+x^2}\right)^2-\frac{2x}{1+x^2}+2\)
b, \(y=\sqrt{1+x}+\sqrt{1-x}+\sqrt{1-x^2}\)
c, \(y=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) khi \(\left|x\right|\le1\)
2, Giá trị của tham số m bằng bao nhiêu để phương trình:
\(x+\sqrt{2-x^2}+x\sqrt{2-x^2}=m\)
3, Tìm m để bất phương trình sau có nghiệm:
\(x^2+\sqrt{4-x^2}< m\)
4, Tìm m để phương trình có nghiệm:
a, \(\left|x+2\right|-\left|x-2\right|=m\)
b, \(\sqrt{x+4}=m\left(1+\sqrt{4-x}\right)\)
c, \(\sqrt{x}=m\left(1+\sqrt{1-x}\right)+\sqrt{1-x}\)
5, Tìm m để \(\sqrt{\left(4+x\right)\left(6-x\right)}\le x^2-2x+m\) với \(\forall x\in\left[-4;6\right]\)
\(\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{x+2}{x-2}\) Với x>0 , x \(\ne\)1,2
1) Rút gọn A
2) Tìm giá trị nguyên của x để A có giá trị nguyên
3) Xét biểu thức \(B=\frac{\left(A-2\right)\left(8\sqrt{x}+3\right)}{7A+18}\). Tìm các giá trị của x để biểu thức B đạt giá trị nhỏ nhất . Tìm GTNN đó ?
giải bất pt \(x^2>\sqrt[3]{\left(1-\sqrt{x}\right)\left(2-3\sqrt{x}+3\right)}\)
Giải cấc bất phương trình:
a) \(\sqrt[3]{3x+1}+\sqrt{2x+4}< 3-x\)
b) \(\sqrt{\left(1+x\right)^5}+\sqrt{\left(1-x\right)^5}\le4\sqrt{2}\)
Tìm giá trị lớn nhất của các biểu thức :
a, \(A=3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
b, B=(2x-1)(3-x) với 0,5\(\le x\le3\)
c, C=x(3-\(\sqrt{3}x\)) với 0\(\le x\le\sqrt{3}\)
d, D= 4x(8-5x) với 0\(\le x\le\frac{8}{5}̸\)
e, E= 4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
^-^
Tìm các số thực a, b, c thỏa mãn đẳng thức
\(\sqrt{x-2}+\sqrt{y+3}+\sqrt{z-4}=\frac{1}{2}\left(x+y+z\right)\)