Biểu thức này chỉ tồn tại GTNN, ko tồn tại GTLN
Biểu thức này chỉ tồn tại GTNN, ko tồn tại GTLN
Cho \(A=\dfrac{\left|2x-3\right|+\left|6y-7\right|}{\left|9-6x\right|+\left|18y-21\right|}-\dfrac{\left(x-2\right)^2+\left(2y-4\right)^2}{\left(3x-6\right)^2+\left(12-6y\right)^2}\). Rút gọn A
\(2\left|2x-6\right|=\dfrac{5}{6}-\left|x-3\right|\)
2:\(\left|x+2013\right|+\left|x+2014\right|+\left|x+2045\right|=2\)
3:\(\left|2x-1\right|=\left|x+1\right|\)
4:\(\sqrt{\left(x+\sqrt{5}\right)}+\sqrt{\left(y-\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Bài 1: Thu gọn đơn thức ( a là hằng só )
a) \(1\dfrac{1}{4}x^2y\left(\dfrac{-5}{6}xy\right)^0.\left(-2\dfrac{1}{3}xy\right)\)
b) \(\dfrac{1}{2}x.\dfrac{1}{4}x^2.\dfrac{x^3}{8}.2y.4y^2.x^3\)
c) \(\left(\dfrac{-9}{2}\right)^3.3xy\left(4a^2x^3\right)\left(4\dfrac{1}{3}ay^2\right)\)
d) \(\left(\dfrac{1}{3}xy^2\right)^3\left(\dfrac{-3}{7}x^4y\right)^2\)
a) Tìm tập hợp các số nguyên x, biết rằng\(4\dfrac{5}{9}:2\dfrac{5}{18}-7< x< \left(3\dfrac{1}{5}:3,2+4,5.1\dfrac{31}{45}\right):\left(-21\dfrac{1}{2}\right)\)
b) tìm x, biết \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{110}\right|-11x\)
c)Tính gt biểu thức \(C=2x^3-5y^3+2015\) tại x,y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{20}=0\)
tính giá trị biểu thức:
A= \(\frac{x^2\left(x^2+2y\right)\left(x^2-2y\right)\left(x^8+2y^8\right)}{x^{16}+2y^{16}}\) với x=4 và y=8
B= \(\frac{\left(a^{10}+b^{10}\right)\left(a^{100}+b^{100}\right)\left(3a^2+b\right)\left(a^{1000}+b^{1000}\right)}{a^{2012}+b^{2012}}\) tại a=-2, b=-12
Tìm GTLN
A=-200-|y-1|-|\(x^2\)-16|-\(\left(y+6\right)^{2010}\)-\(\sqrt{\left(x-4\right)^{2010}}\)
thu gọn các đơn thức sau rồi chỉ rõ phần hệ số phần biến và tìm bậc
A=\(x^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
Bài 1 :
a) Tính B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.35}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.\left(\sqrt{196}\right)^3}\)
b)Tìm x biết : \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|-3,2+\sqrt{\dfrac{4}{25}}\right|\)
c)Tính \(\left|3x+1\right|>4\)