Cho a,b là các số nguyên dương \(\left(a\ge b\right)\) đều không chia hết cho 5.
CMR: \(a^4-b^4⋮5\)
Cho 2 số nguyên dương a và b (a\(\ge\)b) đều ko chia hết cho 5.Cmr a4 - b4 chia hết cho 5
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
Đề HSG Nghệ An ak bạn
P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)
P \(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)
mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\))
Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)
tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)
b.
Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5
Do đó:
- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)
- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố
\(\Rightarrow a=b=c=d=e=5\)
Thay vào thỏa mãn
- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm
Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất
1.Cho các số nguyên a,b,c thỏa mãn a+b+c=0. CMR:
a) \(a^3+b^3+c^3⋮3abc\)
b)\(a^5+b^5+c^5⋮5abc\)
2.Cho a,b,c là các số nguyên dương sao cho a+1,b+2007 chia hết cho 6.CMR:\(P=4^a+a+b⋮6\)
3.Cho \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abcvớia,b,c\inℤ.CMR:a+b+c⋮4\Rightarrow A⋮4\)
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Cho đa thức \(P\left(x\right)=ax^2+bx+c\) (a,b,c là các số nguyên). Biết rằng \(P\left(x\right)\)chia hết cho 5 với mọi số nguyên của x. CMR a,b,c đều chia hết cho 5.
a,Giải phương trình nghiệm nguyên: \(\left(x+1\right)^4-\left(x-1\right)^4=8y^2\)
b, Cho a,b,c là các số nguyên sao cho \(a^2-bc,b^2+2ac,c^2-4ab\) là các đồng thời chia hết cho 3. CMR a+b+c chia hết cho 3
a.
\(\Leftrightarrow8x^3+8x=8y^2\)
\(\Leftrightarrow x\left(x^2+1\right)=y^2\)
Gọi \(d=ƯC\left(x;x^2+1\right)\)
\(\Rightarrow x^2+1-x.x⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow x\) và \(x^2+1\) nguyên tố cùng nhau
\(\Rightarrow\left\{{}\begin{matrix}x=m^2\\x^2+1=n^2\end{matrix}\right.\)
\(x^2+1=n^2\Rightarrow\left(n-x\right)\left(n+x\right)=1\)
\(\Rightarrow x=0\)
\(\Rightarrow y=0\)
TH1: a;b;c đồng dư khi chia 3 \(\Rightarrow a+b+c⋮3\)
TH2: 3 số a;b;c có số dư đôi một khác nhau khi chia cho 3 \(\Rightarrow a+b+c⋮3\)
TH3: 3 số a;b;c có 2 số đồng dư khi chia 3, một số khác số dư. Không mất tính tổng quát, giả sử \(a,b\) đồng dư khi chia 3 còn c khác số dư
\(\Rightarrow\left(a-b\right)^2⋮3\) còn \(\left(a-c\right)^2+\left(b-c\right)^2\) chia 3 luôn dư 1 hoặc 2
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮̸3\) (1)
Mặt khác từ giả thiết:
\(\left\{{}\begin{matrix}b^2-ac+3ac⋮3\\c^2-ab-3ab⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2-ac⋮3\\c^2-ab⋮3\end{matrix}\right.\)
\(\Rightarrow2\left(a^2-bc\right)+2\left(b^2-ac\right)+2\left(c^2-ab\right)⋮3\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮3\) trái với (1) ktm
Vậy \(a+b+c⋮3\)
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho \(a,b,c\) là các số dương . \(CMR\) \(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}\ge\dfrac{1}{4}\left(a+b+c\right)\)
\(\dfrac{a^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(a+b\right)\left(b+c\right)}{64}}=\dfrac{3a}{4}\)
Tương tự:
\(\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(c+a\right)\left(a+b\right)}+\dfrac{c+a}{8}+\dfrac{a+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế:
\(VT+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
1, Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên. CMR nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a,b,c,d đều chia hết cho 5
2, GPT nghiệm nguyên: \(5x^2+8y^2=20412\)
\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)
Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)
\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)
Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)
Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)
Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)
Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)
\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)
\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)