Giải PT: \(4x^2+14x+14=4\sqrt{6x+10}\)
Phương pháp 6. Biến đổi về dạng \(A^2=B^2\)
a \(x^2+4\sqrt{x+3}=3x+6\)
b \(4x^2+14x+11=4\sqrt{6x+10}\)
c \(4\sqrt{x+1}=x^2-5x+14\)
a) ĐKXĐ : \(x\ge-3\)\(pt\Leftrightarrow x^2-2x+1=x+3-4\sqrt{x+3}+4\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{x+3}-2\right)^2\Leftrightarrow x-1=\sqrt{x+3}-2\Leftrightarrow x+1=\sqrt{x+3}\Leftrightarrow\left(x+1\right)^2=x+3\left(x\ge-1\right)\Leftrightarrow x^2+2x+1=x+3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=-2\left(kotm\right)\end{matrix}\right.\)
giải phương trình:
a,\(\left(\sqrt{1+x}+1\right)\left(\sqrt{1+x}+2x-5\right)=x\)
b, \(4\sqrt{6x+10}=4x^2+14x+11\)
a.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=x+1-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)\)
\(\Leftrightarrow\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x-5=-1\)
\(\Leftrightarrow x=2\)
b.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(6x+10+4\sqrt{6x+10}+4=4x^2+20x+25\)
\(\Leftrightarrow\left(\sqrt{6x+10}+4\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}+4=2x+5\\\sqrt{6x+10}+4=-2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}=2x+1\left(1\right)\\\sqrt{6x+10}=-2x-9< 0\left(loại\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow6x+10=4x^2+4x+1\) \(\left(x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow4x^2-2x-9=0\)
\(\Rightarrow x=\dfrac{1+\sqrt{37}}{4}\)
giải pt
a) \(\sqrt{x+2\sqrt{x-1}}+3\sqrt{x+8-6\sqrt{x-1}}=1-x\)
b) \(\sqrt{x\sqrt{x-1}-2x+2}+\sqrt{\left(x+3\right)\sqrt{x-1}-4x+4}=\sqrt{x-1}\)
c) \(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)
d) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-6\sqrt{2x-1}}=4\)
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
d/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)
TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
\(\Leftrightarrow x=13\)
TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)
\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)
TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)
\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow4=4\) (luôn đúng)
TH4: \(\frac{1}{2}\le x< 1\)
\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)
\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)
Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)
Giải PT: \(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=14\)
giải pt: \(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\)
\(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\\ \Leftrightarrow2\left(\sqrt{6x-5}-5\right)+\sqrt{x^2-6x+14}-3=x^2-4x-5\)
(đk x>= 5/6)
\(\Leftrightarrow\frac{2\left(6x-5-25\right)}{\sqrt{6x-5}+5}+\frac{x^2-6x+5}{\sqrt{x^2-6x+14}+3}=\left(x+1\right)\left(x-5\right)\)
\(\Leftrightarrow\frac{12\left(x-5\right)}{\sqrt{6x-5}+5}+\frac{\left(x-1\right)\left(x-5\right)}{\sqrt{x^2-6x+14}+3}-\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{12}{\sqrt{6x-5}+5}+\frac{x-1}{\sqrt{x^2-6x+14+3}}-x-1\right)=0\)
suy ra x = 5 ( dễ dàng chứng minh được cái ngoặc còn lại luôn dương với mọi x lớn hơn bằng 5/6 )
vậy x = 5 là nghiệm của phương trình
Giải pt: \(3x^2+4x+10=2\sqrt{14x^2-7}\)
ĐKXĐ: \(\left|x\right|\ge\frac{1}{2}\)
\(3x^2+4x+10=2\sqrt{14x^2-7}\)
<=> \(2x^2-1-2\sqrt{7\left(2x^2-1\right)}+7+\left(x^2+4x+4\right)=0\)
<=> \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2=0\)
Nhận thấy: \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2\ge0\) \(\forall x\)t/m ĐKXĐ
\(\left(x+2\right)^2\ge0\) \(\forall x\)
suy ra: \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2\ge0\)
Từ đó, dấu "=" phải xảy ra
Khi đó: \(\hept{\begin{cases}\sqrt{2x^2-1}-\sqrt{7}=0\\x+2=0\end{cases}}\) <=> \(x=-2\) (t/m)
Vậy...
giải pt :
a,\(\sqrt{x+14\sqrt{14x-49}}+\sqrt{x-14\sqrt{14x-49}}=\sqrt{14}\)
b, \(\sqrt{x-1+2\sqrt{x-1}}-\sqrt{x-1-2\sqrt{x-1}}=1\)
GiẢI pt \(\dfrac{1}{4x^2-6x+2}+\dfrac{1}{4x^2-10x+6}+\dfrac{1}{4x^2-14x+12}+\dfrac{1}{4x^2-18x+20}=\dfrac{4}{21}\)
bạn thử phẩn tích mẫu thành nhân tử xem băng phuowg pháp tách hoạch nhẩm nghiệm cx đc
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)