So sánh:
a) 2225 và 3150
b) 291 và 535
c) 9920 và 999910
Bài 1 : Tìm x, biết :
a. 2x = 16 b. 3x+1 = 9x
c. 23x+2 = 4x+5 d. 32x-1 = 243
Bài 2 : So sánh :
a. 2225 và 3150 b. 291 và 535 c. 9920 và 999910
Bài 3 : Chứng minh các đẳng thức :
a. 128 . 912 = 1816 b. 7520 = 4510 . 530 .
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
So sánh:
a. A= 99.10k- 10k+2 và B= 10k
b. 9920 và 999910
Lời giải:
a) $A-B=99.10^k-10^{k+2}-10^k=99.10^k-100.10^k-10^k$
$=10^k(99-100-1)=-2.10^k< 0$
$\Rightarrow A<b$
b) $99^{20}-9999^{10}=99^{20}-(99.101)^{10}$
$<99^{20}-(99.99)^{10}=99^{20}-99^{20}=0$
$\Rightarrow 99^{20}<9999^{10}$
Bài 1: So sánh
1/ a) 2300 và 3200 b) 9920 và 999910 c) 3500 và 7300
d) 202303 và 303202 e) 10750 và 7375
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)
\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)
So sánh: 99 20 và 9999 10
So sánh 9920 và 999910
Ta có: 9920 = (992)10= 980110
9801 < 9999 => 980110 < 999910
Vậy 9920 < 999910
So sánh: 9920 và 999910
\(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
Ta thấy: \(9801< 9999\)
=> \(99^{20}< 9999^{10}\)
\(99^{20}=198^{10}\)
\(\Rightarrow99^{20}< 9999^{10}\)
so sánh 9920 và 999910 giải giúp mình với
`99^{20}=(99^{2})^{10}=(99.99)^{10}`
`9999^{10}=(99.101)^{10}`
Vì `(99.99)^{10}<(99.101)^{10}`
`->99^{20}<9999^{10}`
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
mà 9801<9999
nên \(99^{20}< 9999^{10}\)
Bài 8: So sánh:
a) 2225 và 3150
b) 291 và 535
c) 9920 và 999910
Bài 9: Chứng minh đẳng thức:
a) 128 . 1816
b) 7520 = 4510 . 530
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
So sánh: 2225 và 3150
2225 = 23.75 = (23)75 = 875
3150 = 32.75 = (32)75=975
8 < 9 ⇒ 875 < 975
Vậy : 2225 < 3150
so sánh :
a)291 và 536
b)2225 và 3151