9x2 + 20 - 6x > 0 γ x giúp mik vs ạ
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
Giúp mik vs cần gấp!!!
\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a,9x^2+y^2+2z^2−18x+4z−6y+20=0
⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0
⇔x=1;y=3;z=−1
b,5x^2+5y^2+8xy+2y−2x+2=0
⇔4(x+y)2+(x−1)2+(y+1)2=0
⇔x=−y;x=1y=−1⇔x=1y=−1
c,5x^2+2y^2+4xy−2x+4y+5=0
⇔(2x+y)^2+(x−1)^2+(y+2)^2=0
⇔2x=−y;x=1;y=−2
⇔x=1;y=−2
⇔(x−1)^2+(2y−3)^2+(z+2)^2=0
\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương
chứng minh y=3x
\(\dfrac{y+6x}{y}\)= \(\dfrac{y}{x}\)
giải giúp mik vs ạ mik cảm ơn ạ
(y + 6x)/y
= (3x + 6x)/(3x)
= (9x)/(3x)
= 3 (1)
y/x = 3x/x = 3 (2)
Từ (1) và (2) suy ra
(y + 6x)/y = y/x (cùng bằng 3)
x^4+6x^2-6x+14=0( giải giúp mik vs)
`x^4+6x^2-6x+14=0`
`<=>x^4+5x^2+6+x^2-6x+9=0`
`<=>x^4+5x^2+6+(x-3)^2=0`vô lý
Vì `x^4+5x^2+6+(x-3)^2>=6>0`
(x-3)^3+(6x+3)^3-18x^2
Nhờ mn giúp mik vs ạ
tìm min: A=2/(6x-5-9x2)
jup mik vs các bạn ơi///////
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
CHỨNG MINH :
a/ \(x^2-8x+20>0\forall x\)
b/ \(6x-x^2-19< 0\forall x\)
c/ \(3x^2+y^2-2xy+4x+20>0\forall x,y\)
d/ \(5x^2+10y^2-6xy-4x-2y+3>0\forall x,y\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE NHA
a: Ta có: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(-x^2+6x-19\)
\(=-\left(x^2-6x+19\right)\)
\(=-\left(x^2-6x+9+10\right)\)
\(=-\left(x-3\right)^2-10< 0\forall x\)
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
MN giúp mk vs ! Sắp nộp r o(╥﹏╥)o
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)
\(\Leftrightarrow x=-3\) ( thỏa mãn )
P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)
\(\Leftrightarrow18x+9=4x^2-40x+100\)
\(\Leftrightarrow4x^2-58x+91=0\)
Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)
\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)
Khử mẫu của biểu thức lấy căn : a. √3/20 ; b. √5/18 ; c. ab √a/b ( a,b > 0 ) ; d . x/y √y/x ( x,y > 0 ) Giúp mik vs ạ
a: \(\sqrt{\dfrac{3}{20}}=\sqrt{\dfrac{15}{100}}=\dfrac{\sqrt{15}}{10}\)
b: \(\sqrt{\dfrac{5}{18}}=\sqrt{\dfrac{10}{36}}=\dfrac{\sqrt{10}}{6}\)
c: \(ab\sqrt{\dfrac{a}{b}}=ab\cdot\dfrac{\sqrt{a}}{\sqrt{b}}=a\sqrt{ab}\)
d: \(\dfrac{x}{y}\sqrt{\dfrac{y}{x}}=\dfrac{x}{y}\cdot\dfrac{\sqrt{y}}{\sqrt{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)