Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
Xem chi tiết
The Angry
4 tháng 10 2020 lúc 21:21

ĐK : \(x\in N\left|x\inℕ^∗\right|min=1\)

\(\frac{a^2b}{ab^2+1}+\frac{b^2c}{bc^2+1}+\frac{c^2a}{ca^2+1}\ge\frac{3abc}{1+abc}\)

\(\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}+\frac{1^2.1}{1.1^2+1}\ge\frac{3.1.1.1}{1+1.1.1}\)

\(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\ge\frac{3}{2}\)

\(3\ne\frac{3}{2}\)(đpcm)

Khách vãng lai đã xóa
Đặng Mai Anh
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
28 tháng 4 2019 lúc 9:13

Từ \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\left(a+a+b+b+c\right)\ge\left(1+1+1+1+1\right)^2\)

\(\Rightarrow\frac{2}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{25}{2a+2b+c}\)

Tương tự ta có :

\(\frac{2}{b}+\frac{2}{c}+\frac{1}{a}\ge\frac{25}{2b+2c+a}\)

\(\frac{2}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{25}{2a+b+2c}\)

Cộng từng vế BĐT ta thu được :

\(\frac{5}{a}+\frac{5}{b}+\frac{5}{c}\ge25P\)

\(\Leftrightarrow P\le\frac{5\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{25}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=\frac{3}{5}\)

phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu

Tường Nguyễn Thế
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 11 2019 lúc 15:02

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Ngô Bá Hùng
18 tháng 11 2019 lúc 20:54

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
Ngô Bá Hùng
18 tháng 11 2019 lúc 21:16

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

Khách vãng lai đã xóa
Akai Haruma
18 tháng 11 2019 lúc 22:38

Bài 2:

Áp dụng BĐT AM-GM:

\(a^2+2b^2+c^2=(a^2+b^2)+(a^2+c^2)\geq 2\sqrt{(a^2+b^2)(a^2+c^2)}\geq 2\sqrt{\frac{(a+b)^2}{2}.\frac{(a+c)^2}{2}}=(a+b)(a+c)\)

\(\Rightarrow \frac{ab^2}{a^2+2b^2+c^2}\leq \frac{ab^2}{(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \sum \frac{ab^2}{(a+b)(a+c)}=\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\)

Ta cần CM: \(\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\leq \frac{a+b+c}{4}\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)[(a+b+c)(ab+bc+ac)-abc]\)

\(\Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2)\leq (a^3b+ab^3)+(bc^3+b^3c)+(ca^3+c^3a)\)

(dễ thấy luôn đúng do theo BĐT AM-GM)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Minh Quang
8 tháng 5 2021 lúc 9:35

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

Khách vãng lai đã xóa
Trần Duy Khanh
Xem chi tiết
Thầy Giáo Toán
23 tháng 8 2015 lúc 0:09

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).

oooloo
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2020 lúc 22:29

\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)

Cộng vế với vế:

\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)