Chủ đề:
Violympic toán 9Câu hỏi:
CMR \(a^3+b^3\ge ab\left(a+b\right)\forall a,b\ge0\)
Áp dụng kết quả trên cmr: \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Với điều kiện \(\left\{{}\begin{matrix}\forall a,b\ge0\\abc=1\end{matrix}\right.\)