Chứng minh rằng \(\frac{5x^2-30x+53}{x^2-6x+10}>5\)
chứng minh rằng \(\dfrac{5x^2-30x+53}{x^2-6x+10}>5\)
\(\dfrac{5x^2-30x+53}{x^2-6x+10}>5\Leftrightarrow5x^2-30x+53>5x^2-30x+50luôn-đúng\)
Bài 1:
Tìm giá trị lớn nhất của D\(=\dfrac{5x^2-30x+53}{x^2-6x+10}\)
Bài 2:
Giải phương trình: \(8\left(x-3\right)^3+x^3=6x^2-12x+8\)
Bài 1:
\(D=\dfrac{5x^2-30x+53}{x^2-6x+10}=\dfrac{5\left(x^2-6x+10\right)+3}{x^2-6x+10}=5+\dfrac{3}{x^2-6x+10}\)
\(=5+\dfrac{3}{\left(x-3\right)^2+1}\)
Ta có: \(\left(x+3\right)^2+1\ge1\Rightarrow\dfrac{3}{\left(x-3\right)^2+1}\le3\)
\(\Rightarrow D\le3+5=8\)
Vậy max D= 8 <=> x=3
Bài 2:
\(8\left(x-3\right)^3+x^3=6x^2-12x+8\)
\(\Leftrightarrow\left[2\left(x-3\right)^3\right]=-x^3+3.2x^2-3.2^2x+2^3\)
\(\Leftrightarrow\left(2x-6\right)^3=\left(2-x\right)^3\)
\(\Leftrightarrow2x-6=2-x\)
\(\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)
Vậy tập nghiệm : \(S=\left\{\dfrac{8}{3}\right\}\)
Chứng minh rằng \(\forall a\ne\pm1\)thì \(B=\left(\frac{6x-^2}{x+1}+\frac{10}{^2-1}\right)\frac{^2+1}{2}-\frac{5x}{x-1}\)luôn có giá trị âm
Bạn ghi lại đề đi, mấy chỗ mũ 2 ko có gì cả
Bài 4: Chứng minh rằng các đẳng thức sau bằng nhau
a)\(\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}\)=\(\dfrac{6x^2+30x}{4}\)
b)\(\dfrac{x+2}{x-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}\)
a/ ĐK: $x\ne -5$
$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$
Đề này sai
b/ ĐK: $x\ne \pm 1$
$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$
$\to$ ĐPCM
a, Xét \(VT=\dfrac{3x\left(x+5\right)}{2\left(x+5\right)}=\dfrac{3x}{2}\)
\(VP=\dfrac{6x^2+30x}{4}=\dfrac{6x\left(x+5\right)}{4}=\dfrac{3x\left(x+5\right)}{2}\)
Vậy \(VT\ne VP\)hay đpcm ko xảy ra
b, \(VP=\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+2}{x-1}=VT\)
Vậy ta có đpcm
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến :
x( 5x-3) -x^2(x-1)+x(x^2-6x)-10+3x
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=0\)
Bài 3
1.(x-1)(x+2)+5x-5=0
2.(3x+5)(x-3)-6x-10=0
3.(x-2)(2x+3)-7x2+14x=0
4.(x+1)(x-3)-15+5x=0
5.5(2x-1)(x+3)+5x-10x2=0
Bài4
1.3x-6+(x+1)(x-2)=0
2.4x2+6x-(2x+3)(3x-x)=0
3.5x-10-(2-x)(4+x)=0
4.10-10x+(x-1)(x-3)=0
5.20x2+30x-2(x-5)(2x+3)=0
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
chứng minh rằng biểu thức sau không phụ thược vào biến x
x(5x-3)-x^2(x-1)+x(x^2-6x)-10+3x
giúp mình với ạ
Chứng minh rằng:
E=4x2+5x+5>0 với mọi x
F=5x2-6x+7>0 với mọi x
G=-x2+5x -6<0 với mọi x
E=4x2+5x+5>0 với mọi x
=(4x2 +4x+1)+4
=(2x+1)\(^2\)+4
Với mọi x thuộc R thì (2x+1)\(^2\)>=0
Suy ra(2x+1)\(^2\)+4>=4>0
Hay E>0 với mọi x thuộc R(đpcm)
F=5x2-6x+7>0 với mọi x
=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)
=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)
Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0
Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0
Hay F >0 với mọi x(đpcm)
G=-x2+5x -6<0 với mọi x
=-(x2-5x+6,25)+0,25
=-(x-2,5)2 +0,25
Với mọi x thuộc R thì -(x-2,5)2 <=0
Suy ra -(x-2,5)2 +0,25<0
Hay G<0 với mọi x (đpcm)
chúc bạn học tốt ạ
Giải phương trình :
\(\frac{x^2+3x+3}{x^2-4x+3}+\frac{x^2+6x+3}{x^2+5x+3}=\frac{53}{12}\)
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
\(\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
\end{align} \\
\Leftrightarrow \left[ \begin{array}{l}
y = 10 \Rightarrow x + \dfrac{3}{x} = 7 \Leftrightarrow {x^2} - 7x + 4 = 0 \Leftrightarrow x = \dfrac{{7 \pm \sqrt {37} }}{2}\left( {TM} \right)\\
y = - \dfrac{{49}}{{29}} \Rightarrow x + \dfrac{3}{x} = - \dfrac{{49}}{{29}} \Leftrightarrow 29{x^2} + 49x + 87 = 0\left( {VN} \right)
\end{array} \right.{\rm{ }}
\)
Vậy phương trình có tập nghiệm là \(S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}
\)
Điều kiện: $x\ne 1,x\ne 3,x\ne \dfrac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\dfrac{x+3+\dfrac{3}{x}}{x-4+\dfrac{3}{x}}+\dfrac{x+6+\dfrac{3}{x}}{x+5+\dfrac{3}{x}}=\dfrac{53}{12}$
Đặt $y=x+\dfrac{3}{x}+3,$ phương trình trở thành: $\dfrac{y}{y-7}+\dfrac{y+3}{y+2}=\dfrac{53}{12}$
$\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
& \Leftrightarrow \left[ \begin{align}
& y=10\Rightarrow x+\dfrac{3}{x}=7\Leftrightarrow {{x}^{2}}-7x+4=0\Leftrightarrow x=\dfrac{7\pm \sqrt{37}}{2}\left( TM \right) \\
& y=-\dfrac{49}{29}\Rightarrow x+\dfrac{3}{x}=-\dfrac{49}{29}\Leftrightarrow 29{{x}^{2}}+49x+87=0\left( VN \right) \\
\end{align} \right. \\
\end{align}$ Vậy phương trình có tập nghiệm là $S=\left\{ \dfrac{7\pm \sqrt{37}}{2} \right\}$
Khi nãy bị lỗi công thức @@
Điều kiện: $x\ne 1,x\ne 3,x\ne \frac{-5\pm \sqrt{13}}{2}$
+$x=0$ không là nghiệm của phương trình
+ Với $x\ne 0,$phương trình đã cho được viết $\frac{x+3+\frac{3}{x}}{x-4+\frac{3}{x}}+\frac{x+6+\frac{3}{x}}{x+5+\frac{3}{x}}=\frac{53}{12}$
Đặt $y=x+\frac{3}{x}+3,$ phương trình trở thành: $\frac{y}{y-7}+\frac{y+3}{y+2}=\frac{53}{12}$
$\begin{align}
& \Rightarrow 12\left( {{y}^{2}}+2y+{{y}^{2}}-4y-21 \right)=53\left( {{y}^{2}}-5y-14 \right) \\
& \Leftrightarrow 24{{y}^{2}}-24y-252=53{{y}^{2}}-265y-742 \\
& \Leftrightarrow 29{{y}^{2}}-241y-490=0 \\
\end{align}$
$ \Leftrightarrow \left[ \begin{array}{l}
y = 10 \Rightarrow x + \dfrac{3}{x} = 7 \Leftrightarrow {x^2} - 7x + 4 = 0 \Leftrightarrow x = \dfrac{{7 \pm \sqrt {37} }}{2}\left( {TM} \right)\\
y = - \dfrac{{49}}{{29}} \Rightarrow x + \dfrac{3}{x} = - \dfrac{{49}}{{29}} \Leftrightarrow 29{x^2} + 49x + 87 = 0\left( {VN} \right)
\end{array} \right.{\rm{ }}$
Vậy phương trình có tập nghiệm là $S=\left\{ \frac{7\pm \sqrt{37}}{2} \right\}$