giải phương trình sau:
\(\sqrt{2x^2+5x-2}-2\sqrt{2x^2+5x-6}=1\)
giải các phương trình sau:
\(\sqrt{x^2+6x+9}=3x-6\)
\(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\sqrt{4-5x}=2-5x\)
\(\sqrt{4-5x}=\sqrt{2-5x}\)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
giải phương trình: \(\sqrt{2x+6}\) - \(\sqrt{5x-1}\) = \(\sqrt{3x+5}\) - 2
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow\sqrt{3x+5}-\sqrt{2x+6}+\sqrt{5x-1}-2=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{3x+5}+\sqrt{2x+6}}+\dfrac{5\left(x-1\right)}{\sqrt{5x-1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{3x+5}+\sqrt{2x+6}}+\dfrac{5}{\sqrt{5x-1}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
giải phương trình sau:
a)\(2\left(1-x\right)\sqrt{x^2+2x-1}+2x+1=x^2\)
b)\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
a.
ĐKXĐ: \(x^2+2x-1\ge0\)
\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)
Đặt \(\sqrt{x^2+2x-1}=t\ge0\)
\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)
\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=-1\pm\sqrt{6}\)
b.
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)
\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)
Giải phương trình:
\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)
\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)
<=> \(\sqrt{2x^2+5x-2}=1+\sqrt{2x^2+5x-9}\)(1)
ĐK : \(\orbr{\begin{cases}x\ge\frac{\sqrt{97}-5}{4}\\x\le\frac{-\sqrt{97}-5}{4}\end{cases}}\)
Đặt t = 2x2 + 5x - 2
(1) <=> \(\sqrt{t}=1+\sqrt{t-7}\)( t ≥ 7 )
Bình phương hai vế
<=> \(t=t+2\sqrt{t-7}-6\)
<=> \(t+2\sqrt{t-7}-t=6\)
<=> \(2\sqrt{t-7}=6\)
<=> \(\sqrt{t-7}=3\)
<=> t - 7 = 9
<=> t = 16 ( tm )
=> 2x2 + 5x - 2 = 16
<=> 2x2 + 5x - 2 - 16 = 0
<=> 2x2 + 5x - 18 = 0
<=> 2x2 - 4x + 9x - 18 = 0
<=> 2x( x - 2 ) + 9( x - 2 ) = 0
<=> ( x - 2 )( 2x + 9 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{9}{2}\end{cases}}\)( tm )
Vậy phương trình có hai nghiệm x1 = 2 ; x2 = -9/2
\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)
\(\Leftrightarrow\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-2-7}=1\)
Đặt : \(\sqrt{2x^2+5x-2}=t\)
\(\Leftrightarrow t-\sqrt{t^2-7}=1\)
Gải được t thế vào tìm được x =2 nha bạn
giải các phương trình sau :
\(\sqrt{2x^2+5x+2}-2\sqrt{2x^2+5x-6}=1\)
ĐKXĐ: ....
\(\Leftrightarrow\sqrt{2x^2+5x+2}=1+2\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow2x^2+5x+2=4\left(2x^2+5x-6\right)+1+4\sqrt{2x^2+5x-6}\)
\(\Leftrightarrow3\left(2x^2+5x-6\right)+4\sqrt{2x^2+5x-6}-7=0\)
Đặt \(\sqrt{2x^2+5x-6}=a\ge0\)
\(3a^2+4a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+5x-6}=1\Leftrightarrow2x^2+5x-7=0\)
giải phương trình \(2x-1+\sqrt{5x-4}=\sqrt{8x^2+2x-6}\)
Đk:\(x\ge\frac{4}{5}\)
\(pt\Leftrightarrow2x-1+\sqrt{5x-4}-\sqrt{8x^2+2x-6}=0\)
\(\Leftrightarrow\left(\sqrt{5x-4}-\left(2x-1\right)\right)-\left(\sqrt{8x^2+2x-6}-\left(4x-2\right)\right)=0\)
\(\Leftrightarrow\frac{\left(5x-4\right)-\left(2x-1\right)^2}{\sqrt{5x-4}+2x-1}-\frac{\left(8x^2+2x-6\right)-\left(4x-2\right)^2}{\sqrt{8x^2+2x-6}+4x-2}=0\)
\(\Leftrightarrow\frac{-\left(x-1\right)\left(4x-5\right)}{\sqrt{5x-4}+2x-1}-\frac{-2\left(x-1\right)\left(4x-5\right)}{\sqrt{8x^2+2x-6}+4x-2}=0\)
\(\Leftrightarrow-\left(x-1\right)\left(4x-5\right)\left(\frac{1}{\sqrt{5x-4}+2x-1}-\frac{2}{\sqrt{8x^2+2x-6}+4x-2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\4x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{5}{4}\end{cases}}\) (thỏa mãn)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp