Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Akai Haruma
28 tháng 11 2021 lúc 0:17

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Huy Trần
Xem chi tiết
Nguyễn Ngọc Huy Toàn
30 tháng 5 2022 lúc 15:51

\(ĐK:x\in R\)

\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)

Đặt \(x^2+x+1=a;a\ge0\)

\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)

(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)

\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)

\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)

\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)

Vậy \(S=\left\{0;-1\right\}\)

 

 

Vũ Đình Thái
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 14:35

đk: \(-x^4+3x-1\ge0\)

Có \(-\left(x^4+1\right)\le-2x^2\)

 \(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\) 

Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)

\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\)  (*)

Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)

Từ (*) (2*) dấu = xảy ra khi x=1 (TM)

Vậy x=1

 

Lê Thu Trang
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 16:20

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

nam do duy
Xem chi tiết
Akai Haruma
8 tháng 5 2023 lúc 23:23

Lời giải:
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow (x^2-2x)+(\sqrt{4x+1}-3)+(\sqrt{x-1}-1)=0$

$\Leftrightarrow x(x-2)+\frac{4(x-2)}{\sqrt{4x+1}+3}+\frac{x-2}{\sqrt{x-1}+1}=0$
$\Leftrightarrow (x-2)\left[x+\frac{4}{\sqrt{4x+1}+3}+\frac{1}{\sqrt{x-1}+1}\right]=0$

Dễ thấy với mọi $x\geq 1$ thì biểu thức trong ngoặc vuông luôn dương.

$\Rightarrow x-2=0$

$\Leftrightarrow x=2$ (tm)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 12 2020 lúc 19:45
Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 1 2022 lúc 22:37

Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)

Khi đó:

\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)

\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)

\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)

\(\Rightarrow2x^2-4x+2\le0\)

\(\Rightarrow2\left(x-1\right)^2\le0\)

\(\Rightarrow x=1\)

:vvv
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2021 lúc 5:24

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\-4+\sqrt{7}\le x\le-1\end{matrix}\right.\)

Khi x thỏa ĐKXĐ, vế phải luôn dương, bình phương 2 vế ta được:

\(\Leftrightarrow3x^2+16x+17+2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=4x^2+16x+16\)

\(\Leftrightarrow2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=x^2-1\)

\(\Leftrightarrow4\left(x^2-1\right)\left(2x^2+16x+18\right)=\left(x^2-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\4\left(2x^2+16x+18\right)=x^2-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\7x^2+64x+73=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{-32+3\sqrt{57}}{7}\\x=\dfrac{-32-3\sqrt{57}}{7}\left(loại\right)\end{matrix}\right.\)

Big City Boy
Xem chi tiết