Tìm x biết:
\(a)x^3-6x^2+12x-8=0\\ b)8x^3-12x^2+6x-1=0\\ c)x^3+9x^2+27x+27=0\)
tìm x: x^3-6x^2+12x-8=0
b)16x^2-9(x+1)^2+0
c)-27+27x-9x^2+x^3=0
d)x^2-6x+5=0
d) <=>x2-5x-x+5=0
<=>x(x-5)-(x-5)=0
<=>(x-5)(x-1)=0
<=>x=5 hoặc x=1
1) Tìm x biết
a) x3-3x2+3x-1=0
b) (x-2)3+6(x+1)2-x+12=0
c) x3+6x2+12x+8=0
d) x3-6x2+12x-8=0
e) 8x3-12x3+6x-1=0
f) x3+9x2+27x+27=0 giải giùm mình nha
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
Giúp mình nhé.
Tìm x biết:
a) x3 - 6x2 + 12x - 8 = 0
b)x3 + 9x2 +27x + 27 = 0
c) 8x3 - 12x2 + 6x = 1
d) x3 - 3x2 + 3x = 28
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
Tìm x biết:
a) x3 - 6x2 + 12x - 8 = 0
b)x3 + 9x2 +27x + 27 = 0
a ) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b ) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)
a) x3 - 6x2 + 12x - 8 = 0
( x - 2 ) 3 = 0
x - 2 = 0
x = 2
b) x3 + 9x2 + 27x + 27 = 0
( x + 3 )3 = 0
x + 3 = 0
x = -3
Mọi người giúp mình bài này nha chiều nay mình gần gấp rùi :<
Tìn x biết :
a, x^3 - 9x^2 + 27x - 27 = -8
b, 64x^3 + 48x^2 + 12x + 1 = 27
c, x^3 - 3x^2 + 3x -1 = 0
d, x^3 + 6x^2 + 12x + 8 = 0
c, x^3 - 6x^2 + 12x - 8 =0
Ai giải đc bài này mình rất biết ơn đó :>
a) \(x^3-9x^2+27x-27=-8\Leftrightarrow\left(x-3\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-3=-2\Leftrightarrow x=1\) vậy \(x=1\)
b) \(64x^3+48x^2+12x+1=0\Leftrightarrow\left(4x+1\right)^3=3^3\)
\(\Rightarrow4x+1=3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{2}{4}=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)
c) \(x^3-3x^2+3x-1=0\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\) vậy \(x=1\)
d) \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\) vậy \(x=-2\)
e) \(x^3-6x^2+12x-8=0\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\) vậy \(x=2\)
Bài 1 : Tìm x
a. ( 2x + 1 )^2 - 4( x + 2 )^2 = 9
b.( 3x - 1 )^2 + 2( x + 3 )^2 + 11( x + 1 ).(1 - x ) = 6
c. 8x^3 - 12x^2 + 6x - 1 = 0
d. x^3 + 9x^2 + 27x + 27 = 0
Bài 1: Tìm x
a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)
\(\Leftrightarrow-12x-24=0\)
\(\Leftrightarrow-12x=24\)
hay x=-2
Vậy: x=-2
b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)
\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)
\(\Leftrightarrow6x+23=0\)
\(\Leftrightarrow6x=-23\)
hay \(x=-\frac{23}{6}\)
Vậy: \(x=-\frac{23}{6}\)
c) Ta có: \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
hay \(x=\frac{1}{2}\)
Vậy: \(x=\frac{1}{2}\)
d) Ta có: \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Vậy: x=-3
a) (2x + 1)2 - 4(x + 2)2 = 9
4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9
4x2 + 4x + 1 - 4x2 - 16x - 16 = 9
-12x - 15 = 9
-12x = 9 + 15
-12x = 24
x = 12 : (-2)
x = -2
b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6
9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6
9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6
9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6
6x + 30 = 6
6x = 6 - 30
6x = -24
x = -24 : 6
x = -4
c) 8x3 - 12x2 + 6x - 1 = 0
(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0
(2x - 1)3 = 0
2x - 1 = 0
2x = 1
x = 1/2
d) x3 + 9x2 + 27x + 27 = 0
x3 + 3.x2.3 + 3.x.32 + 33 = 0
(x + 3)3 = 0
x + 3 = 0
x = 0 - 3
x = -3
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 x mũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
a.\(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b.\(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c.\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
phân tích các đa thức sau thành nhân tử
a, 27x mũ 3 + 27 xmũ 2 + 9x + 1
b, x mũ 3 - 6x mũ 2 + 12x - 8
c, 8x mũ 3 + 12x mũ 2 + 6x + 1
d, 9x mũ 3 - 12x mũ 2 + 6x - 1
e, x mũ 3 - 6x mũ 2 y + 12xy mũ 2 - 8y mũ 3
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)