giải pt : \(\left(8x-11\right)^3+\left(7x-12\right)^2+\left(23-15x\right)^3=0\)
Giải PT: \(48x\left(x+1\right)\left(x^3-4\right)=\left(x^4+8x+12\right)^2\)
\(48x\left(x+1\right)\left(x^3-4\right)=\left(x^4+8x+12\right)^2\)
\(\Leftrightarrow4\left(12x+12\right)\left(x^4-4x\right)=\left(x^4+8x+12\right)^2\)
Đặt \(\left\{{}\begin{matrix}x^4-4x=a\\12x+12=b\end{matrix}\right.\)
\(\Rightarrow4ab=\left(a+b\right)^2\)
\(\Leftrightarrow4ab=a^2+a^2+2ab\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow x^4-16x-12=0\)
\(\Leftrightarrow\left(x^2-2x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x^2-2x-2=0\)
\(\Rightarrow x=1\pm\sqrt{3}\)
1, Giải pt
\(x^4-8x^3+21x^2-24x+9=0\)
2, Giải pt
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
Giải giúp mk vs ạ. Cảm ơn m.n nhìu
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Thu gọn biểu thức
a) \(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
b)\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)(với axyz khác 0)
\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)
\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)
\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)
\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)
\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)
Làm tiếp bài của Song Ngư (๖ۣۜO๖ۣۜX๖ۣۜA)
\(D=\frac{\frac{-188}{11}x^{17}y^3}{6z^4a}\)
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
giải PT : a, \(^{x^4+8x^2-12=0}\) b,\(5x^4-3x^2+\frac{7}{16}=0\) c,\(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)
\(x^3+3x^2+x+3=0\)
Tìm x
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
c) \(7x^2-21x=0\)
d) \(9x^2-6x+1=0\)
e) \(16x^2-49=0\)
f) \(5x^3-20x=0\)
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
\(\Rightarrow15x^2-35x-15x^2+15x=3\)
\(\Rightarrow-20x=3\)
\(\Rightarrow x=-\dfrac{3}{20}\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)
\(\Rightarrow9x+14=2\)
\(\Rightarrow9x=-12\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(7x^2-21x=0\)
\(\Rightarrow7x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(9x^2-6x+1=0\)
\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)
\(\Rightarrow\left(3x-1\right)^2=0\)
\(\Rightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
e) \(16x^2-49=0\)
\(\Rightarrow\left(4x\right)^2-7^2=0\)
\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
f) \(5x^3-20x=0\)
\(\Rightarrow5x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
Giải PT:
1)\(\left(x^2+4x+2\right)\cdot\left(1-\frac{1}{x}\right)+\frac{36x^2}{\left(x-2\right)^2}=0\)
2)\(\left(x^2-x+1\right)^3-6\left(x+1\right)^3=\left(x^3+1\right)\left(6x^2-17x-5\right)\)
3)\(\left(x^3+4x-4\right)^3+4x^3+15x-20=0\)
Giải các phương trình sau :
1. \(x^4-7x^3+6x^2+14x+4=0\)
2. \(2\left(2x^2+3x+3\right)^2+6x^2+8x+12=0\)
3. \(\left(2x^2-5x+1\right)^2-10x^2+24x-4=0\)
4. \(\left(2x+1\right)\left(2x-3\right)\left(2x-2\right)\left(2x+6\right)=100\)
5. \(\left(2x+1\right)\left(2x-3\right)\left(2x-2\right)\left(2x+6\right)=\left(x+6\right)^2\)
Casio:
a/ \(\Leftrightarrow\left(x^2-5x-2\right)\left(x^2-2x-2\right)=0\)
b/ \(\Leftrightarrow2\left(2x^2+3x+3\right)^2+6\left(x+\frac{2}{3}\right)^2+\frac{28}{3}=0\)
Vế trái luôn dương nên pt vô nghiệm
c/ Câu này đề sai, pt này ko thể tách ra được nên chắc chắn là ko giải được
d/ Câu này chắc đề cũng ko đúng: đặt \(2x-4=a\Rightarrow2x=a+4\)
\(\Rightarrow\left(a+5\right)\left(a+1\right)\left(a+2\right)\left(a+10\right)=100\)
\(\Leftrightarrow a\left(a^3+18a^2+97a+180\right)=0\)
Dù pt có nghiệm \(a=0\) nhưng pt bậc 3 đằng sau lại ko thể giải
e/ Câu này giống câu trên
\(\Leftrightarrow x\left(16x^3+16x^2-93x+12\right)=0\)
Pt bậc 3 phía sau ko giải được
giải pt: a)\(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\) b)\(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\) c)\(\frac{1}{\left(x+29\right)^2}+\frac{1}{\left(x+30\right)^2}=\frac{13}{36}\)