Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Long
Xem chi tiết
Phạm Tuấn Long
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 11 2019 lúc 13:40

\(x=2018-2\sqrt{2018}+1=\left(\sqrt{2018}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2018}-1\)

\(\Rightarrow P=\frac{\sqrt{2018}-1}{\sqrt{2018}-1+1}=\frac{\sqrt{2018}-1}{\sqrt{2018}}=\frac{2018-\sqrt{2018}}{2018}\)

Khách vãng lai đã xóa
Phạm Tuấn Long
Xem chi tiết
Trần Thanh Phương
22 tháng 8 2019 lúc 22:15

Câu 1:

Áp dụng BĐT Cô-si:

\(A=\sqrt{\left(2-x\right)\left(2+x\right)}\le\frac{2-x+2+x}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow2-x=2+x\Leftrightarrow x=0\)

Câu 2:

\(B=\sqrt{-x^2+x+\frac{1}{4}}\)

\(B=\sqrt{-\left(x^2-x-\frac{1}{4}\right)}\)

\(B=\sqrt{-\left(x^2-x+\frac{1}{4}-\frac{1}{2}\right)}\)

\(B=\sqrt{-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\right]}\)

\(B=\sqrt{\frac{1}{2}-\left(x-\frac{1}{2}\right)^2}\le\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Phạm Tuấn Long
Xem chi tiết
Hiệu diệu phương
Xem chi tiết
Trần Quốc Lộc
6 tháng 8 2019 lúc 8:36

\(a\text{) }x^2+\sqrt{x+2019}=2019\left(x\ge-2019\right)\\ \Leftrightarrow x^2+x+\frac{1}{4}=\left(x+2019\right)-\sqrt{x+2019}+\frac{1}{4}\\ \Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2019}-\frac{1}{2}\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{x+2019}-\frac{1}{2}\left(1\right)\\x+\frac{1}{2}=\frac{1}{2}-\sqrt{x+2019}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+\frac{1}{4}=\sqrt{x+2019}\\ ĐK:x\ge-\frac{1}{4}\\ \Leftrightarrow\left(x+\frac{1}{4}\right)^2=x+2019\\ \Leftrightarrow\left(x+\frac{1}{4}\right)^2=x+2019\\ \Leftrightarrow x^2+\frac{1}{2}x+\frac{1}{16}-x-2019=0\\ \Leftrightarrow x^2-\frac{1}{2}x+\frac{1}{16}-2019=0\\ \Leftrightarrow\left(x-\frac{1}{4}\right)^2-2019=0\\ \Leftrightarrow\left(x-\frac{1}{4}-\sqrt{2019}\right)\left(x-\frac{1}{4}+\sqrt{2019}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{4}-\sqrt{2019}=0\\x-\frac{1}{4}+\sqrt{2019}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4\sqrt{2019}+1}{4}\left(T/m\right)\\x=\frac{-\sqrt{2019}+1}{4}\left(K^o\text{ }T/m\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x=-\sqrt{x+2019}\\ ĐK:-2019\le x\le0\\ \Leftrightarrow x^2=x+2019\\ \Leftrightarrow x^2-x-2019=0\\ \Leftrightarrow x^2-x-2019=0\\ \Leftrightarrow.....\)

Trần Quốc Lộc
6 tháng 8 2019 lúc 8:44

\(b\text{) }x+\sqrt{2-x^2}+x\sqrt{2-x^2}=3\)

\(Đặt\text{ }\sqrt{2-x^2}=y\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=3\\x^2+y^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+2xy=6\\2x^2+2y^2=4\end{matrix}\right.\\\Leftrightarrow2x^2+2y^2-\left(2x+2y+2xy\right)=-2\\ \Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy....

Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

Phạm Tuấn Long
Xem chi tiết
Mai Nguyễn
9 tháng 7 2019 lúc 10:32

undefined

Mai Nguyễn
9 tháng 7 2019 lúc 10:37

undefined

Chờ Em Mười Năm
Xem chi tiết
Neet
29 tháng 1 2017 lúc 19:09

ta có: \(2P=2x^2-2x\sqrt{y}+2x+2y-2\sqrt{y}+2\)

\(2P=\left(x^2-2x\sqrt{y}+y\right)+\left(x^2+2x+1\right)+\left(y-2\sqrt{y}+1\right)\)

\(2P=\left(x-\sqrt{y}\right)^2+\left(x+1\right)^2+\left(\sqrt{y}-1\right)^2\ge0\forall x,y\)

\(\Rightarrow P\ge0\forall x,y\)

dấu = xảy ra khi \(\left\{\begin{matrix}x=\sqrt{y}\\x=-1\\\sqrt{y}=1\end{matrix}\right.\)(có gì đó sai sai)

Neet
29 tháng 1 2017 lúc 18:44

chờ Em hai mươi năm :v

Phạm Tuấn Long
Xem chi tiết
Akai Haruma
14 tháng 8 2019 lúc 12:41

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\)

\(=1-\frac{1}{\sqrt{2020}}\)