\(x=2018-2\sqrt{2018}+1=\left(\sqrt{2018}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2018}-1\)
\(\Rightarrow P=\frac{\sqrt{2018}-1}{\sqrt{2018}-1+1}=\frac{\sqrt{2018}-1}{\sqrt{2018}}=\frac{2018-\sqrt{2018}}{2018}\)
\(x=2018-2\sqrt{2018}+1=\left(\sqrt{2018}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2018}-1\)
\(\Rightarrow P=\frac{\sqrt{2018}-1}{\sqrt{2018}-1+1}=\frac{\sqrt{2018}-1}{\sqrt{2018}}=\frac{2018-\sqrt{2018}}{2018}\)
Cho \(2018x^3=2019y^3=2020z^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=8\)
Tính giá trị biểu thức: \(B=\frac{\sqrt[3]{2018x^2+2019y^2+2020z^2}}{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}\)
Cho các số dương x, y thoả mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}.\)Tính giá trị của x + y .
Cho biểu thức \(P=\frac{x-2\sqrt{x}}{x\sqrt{x-1}}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)Tìm tất cả các giá trị của x sao cho giaá trị của P là một số nguyên
Cho x, y, z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{\sqrt{x}+1}{y+1}+\frac{\sqrt{y}+1}{z+1}+\frac{\sqrt{z}+1}{x+1}\)
Bài 1 : Rút gọn biểu thức
A= \(\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2\)
B= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) Với x > 0 ; x≠1
Tìm giá trị của x để B = A
Bà 2 : Cho biểu thức : \(\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x}+1}\) ( x>0 )
a, Rút gọn biểu thức P
b, Tìm các giá trị của x để P > 1/2
Mn ơi mn giải giúp em với ạ ! em cảm ơn ạ
cho 2\(\sqrt{x}-\sqrt{y}=0\). Tìm giá trị nhỏ nhất của biểu thức M=x-\(\sqrt{y}+2019\)
cho \(\sqrt{3+\sqrt{9-4x^2}}=a\) với a> 0và \(\frac{-3}{2}\le x\le\frac{3}{2}\)
tính giá trị của P theo a, biết P=\(\frac{\sqrt{3+2x}-\sqrt{3-2x}}{5x}\)
Cho các số thực \(x>1,y>1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x}{\sqrt{y}-1}+\frac{y}{\sqrt{x}-1}\)
Tính giá trị biểu thức: A\(=\)\(\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}(a+\frac{1}{a})\) , \(y=\frac{1}{2}(b+\frac{1}{b})\)