F=\(\sqrt{x^2+2019}\)
=>\(F^2=x^2+2019 =>x^2+2019\)≥2019
=> \(F^2 \)min=2019=>F min=\(\sqrt{2019}\)<=>x=0
Đúng 0
Bình luận (2)
G=\(\sqrt{x^2-x+1}\)=\(\sqrt{x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}}\)=\(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\) \(\ge\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)
Vậy minG=\(\frac{\sqrt{3}}{2}\) <=> x\(=\frac{1}{2}\)
Đúng 0
Bình luận (2)