Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vũ tiền châu
Xem chi tiết
khánhchitt3003
15 tháng 8 2017 lúc 19:56

đặt \(\sqrt{3x+1}=a\) 

=> pt <=> 4x^2 +a +6=a^2 +12x

chuyển hết nt sang vế phải để vt =0 ptđttnt có ntc=a+2x-3

câu 2 đặt \(\sqrt[3]{3x-5}=2y-3\) rồi làm tt như bài trên lớp

khánhchitt3003
15 tháng 8 2017 lúc 20:23

sau khi chuyển  cậu có pt a62-4x^2-a+12x-6=0

=> a^2+2ax-3a-2ax-4x^2+6x+2a+4x-6=0

<=> (a+2x-3)(a-2x+2)=0

khánhchitt3003
15 tháng 8 2017 lúc 21:11

c2 đăt...

=>3x-5=(2y-3)^3 

mặt khác từ pt =>\(\sqrt[3]{3x-5}=\left(2x-3\right)^3-x+2\)

=>2y-3=(2x-3)^3-x+2

=>2y+x-5=(2x-3)^3 rồi cậu giải tt bài trên lớp

Mộc Trà
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 6 2019 lúc 11:43

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)

\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)

Phương trình vô nghiệm

Nguyễn Việt Lâm
24 tháng 6 2019 lúc 11:49

b/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)

\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 6 2019 lúc 11:55

c/

\(\Leftrightarrow8x^2+20x+1=\sqrt{\left(8x^2\right)^2+16x^2+1-16x^2}\)

\(\Leftrightarrow8x^2+20x+1=\sqrt{\left(8x^2+1\right)^2-16x^2}\)

\(\Leftrightarrow8x^2+20x+1=\sqrt{\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)}\)

\(\Leftrightarrow3\left(8x^2+4x+1\right)-2\left(8x^2-4x+1\right)=\sqrt{\left(8x^2+4x+1\right)\left(8x^2-4x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{8x^2+4x+1}=a>0\\\sqrt{8x^2-4x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow3a^2-2b^2=ab\Leftrightarrow3a^2-ab-2b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a+2b\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow\sqrt{8x^2+4x+1}=\sqrt{8x^2-4x+1}\)

\(\Leftrightarrow8x^2+4x+1=8x^2-4x+1\)

\(\Leftrightarrow x=0\)

Vũ Tiền Châu
Xem chi tiết
Tuyển Trần Thị
13 tháng 8 2017 lúc 10:46

\(4x^2-4-3x=\sqrt[3]{x^2\left(x^2-1\right)}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)-3x=\sqrt[3]{x^2\left(x-1\right)\left(x+1\right)}\)

dat \(\left(x-1\right)\left(x+1\right)=y\)

\(4y-3x=\sqrt[3]{x^2y}\)

\(\Leftrightarrow\left(4y-3x\right)^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+108yx^2-27x^3=x^2y\)

\(\Leftrightarrow64y^3-144y^2x+107yx^2-27x^3=0\)

\(\Leftrightarrow64y^3-64y^2x-80y^2x+80x^2y+27x^2y-27x^3=0\)

\(\Leftrightarrow\left(y-x\right)\left(64y^2-80xy+27x^2\right)=0\)

de thay \(64y^2-80xy+27x^2=\left(8y\right)^2-2.8y.5x+25x^2+2x^2=\left(8y-5x\right)^2+2x^2>0\)

\(\Rightarrow y=x\)hay \(\left(x-1\right)\left(x+1\right)=x\Rightarrow x^2-x-1=0\) 

\(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

câu b tương tự nhé bạn

Kinder
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:06

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:10

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

dinh huong
Xem chi tiết
Trần Ngọc Thiên Kim
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Khách vãng lai đã xóa
Trần Bảo Minh
11 tháng 1 2022 lúc 20:33

Hummmm

Khách vãng lai đã xóa
Hà Nguyễn Bảo Trâm
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Khách vãng lai đã xóa
vũ tiền châu
Xem chi tiết
alibaba nguyễn
1 tháng 9 2017 lúc 9:42

Trước tiên ta chứng minh:

\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)

Với \(x\ge0\)thì bất đẳng thức đúng.

Với \(x< 0\)

\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng

Quay lại bài toán ta có:

\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)

\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)

\(\Rightarrow x^2+x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.

Bá đạo sever là tao
1 tháng 9 2017 lúc 12:00

$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

Minh Bình
Xem chi tiết

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Nguyễn Việt Lâm
16 tháng 1 lúc 20:28

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 lúc 20:33

c.

\(2x+3\sqrt{x}+1=0\)

ĐKXĐ: \(x\ge0\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)

\(\Rightarrow2x+3\sqrt{x}+1>0\)

Pt đã cho vô nghiệm

d.

\(x^4+4x^2+1=3x^3+3x\)

\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)

\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

Đặt \(x+\dfrac{1}{x}=t\)

\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

Xem chi tiết