Tìm x, y thỏa mãn: \(xy=x\sqrt{2y-4}+y\sqrt{2x-4}\)
Cho x,y,z > 0 thỏa mãn x+y+z= 2. Tìm giá trị lớn nhất của biểu thức:
P= \(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\)
Áp dụng bất đẳng thức Bunyakovsky:
\(P^2=\left(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)\)
\(=3\left(4+xy+yz+xz\right)=12+3\left(xy+yz+xz\right)\)
Mặt khác,theo AM-GM:
\(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=4\)
\(\Rightarrow12+3\left(xy+yz+xz\right)\le12+4=16\)
\(\Rightarrow P^2\le16\Leftrightarrow P\le4\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
Tìm x, y, z thỏa mãn phongw trình:
\(x+y+z-2009=2\sqrt{x-19}+4\sqrt{y-7}+6\sqrt{z-1997}\)
<=>\(\left(x-19\right)-2\sqrt{x-19}+1+\left(y-7\right)+4\sqrt{y-7}+4\)+\(+\left(z-1997\right)-6\sqrt{z-1997}+9=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}}\)
vay...
\(\Leftrightarrow\left(x-19\right)2\sqrt{x-19}+1+\left(y-7\right)+4+\left(z-1997\right)+9=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}\)
Chúc bạn học tốt!
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
b
\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)
\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)
\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)
Dấu bằng xảy ra khi \(x=2\)
cho x,y là 2 số thực thỏa mãn \(x-6\sqrt{x+3}=6\sqrt{4+y}-y\)
tìm gtnn,gtln của P=x+y
+ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-3\\y\ge-4\end{matrix}\right.\)
\(gt\Rightarrow x+y=6\left(\sqrt{x+3}+\sqrt{4+y}\right)\le6\sqrt{2\left(x+y+7\right)}\)
\(\Rightarrow\left(x+y\right)^2\le72\left(x+y+7\right)\)
\(\Rightarrow\left(x+y\right)^2-72\left(x+y\right)-504\le0\)
\(\Rightarrow\left(x+y-36\right)^2\le1800\Rightarrow P\le36+30\sqrt{2}\)
max \(P=36+30\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+3=y+4\\x+y=36+30\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{37}{2}+15\sqrt{2}\\y=\frac{35}{2}+15\sqrt{2}\end{matrix}\right.\)
+ \(x+y=6\left(\sqrt{x+3}+\sqrt{y+4}\right)\)
\(\Rightarrow\left(x+y\right)^2=36\left(x+y+7+2\sqrt{\left(x+3\right)\left(y+4\right)}\right)\)
\(\Rightarrow\left(x+y\right)^2-36\left(x+y\right)-252=72\sqrt{\left(x+3\right)\left(y+4\right)}\ge0\)
\(\Rightarrow\left(x+y-42\right)\left(x+y+6\right)\ge0\Rightarrow x+y\ge42\)
Min \(P=42\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x+3\right)\left(y+4\right)}=0\\x+y=42\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=45\end{matrix}\right.\\\left\{{}\begin{matrix}x=46\\y=-4\end{matrix}\right.\end{matrix}\right.\)
Tìm x;y;z thỏa mãn:
\(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2020}-1}{z-2020}=\frac{3}{4}\)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
Tìm các cặp (x,y) ∈ Z thỏa mãn 2x+y-xy=5
Ta có \(2x+y-xy=5\Leftrightarrow xy-2x-y+5=0\Leftrightarrow x\left(y-2\right)-\left(y-2\right)+3=0\Leftrightarrow\left(x-1\right)\left(y-2\right)=-3\).
Ta có bảng:
x - 1 | 1 | 3 | -1 | -3 |
y - 2 | -3 | -1 | 3 | 1 |
x | 2 | 4 | 0 | -2 |
y | -1 | 1 | 5 | 3 |
Tìm x,y nguyên dương thỏa mãn: \(y=\sqrt[3]{18+\sqrt{x+100}}+\sqrt[3]{18-\sqrt{x+100}}\)
\(y=\sqrt[3]{18+\sqrt{x+100}}+\sqrt[3]{18-\sqrt{x+100}}\) (Điều kiện xác định : \(x\ge-100\))
Ta có : \(36=\left(18+\sqrt{x+100}\right)+\left(18-\sqrt{x+100}\right)=\left(\sqrt[3]{18+\sqrt{x+100}}\right)^3+\left(\sqrt[3]{18-\sqrt{x+100}}\right)^3\)
Đặt \(a=\sqrt[3]{18+\sqrt{x+100}}\) ; \(b=\sqrt[3]{18-\sqrt{x+100}}\)
\(\Rightarrow a^3+b^3=36\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=36\). Vì \(a+b\in Z^+\) nên a+b \(\in\) Ư(36)
\(\Rightarrow a+b\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
Giải từng trường hợp , được x = 225 , y = 3 thoả mãn đề bài.
Cho x, y là các số thực thỏa mãn: \(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\) . Tìm giá trị nhỏ nhất của biểu thức: \(S=x^2+3xy-2y^2-4y+5\)
Các cậu giúp hộ tớ ạ~