Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Nguyễn Huy Hải
Xem chi tiết
Minh Hiền
1 tháng 10 2015 lúc 14:12

2                                                     

Mũ Rơm
Xem chi tiết
Edowa Conan
1 tháng 9 2016 lúc 19:22

Hình như đề sai hay sao mk sửa lại nha:

A=|x-7|+6

     Vì |x-7|\(\ge\)0

          Suy ra:|x-7|+6\(\ge\)6

Dấu = xảy ra khi x-7=0

                           x=7

      Vậy Min A=6 khi x=7

Isolde Moria
1 tháng 9 2016 lúc 23:01

Ta có

\(\left|x-7\right|\ge x-7\)

\(\Leftrightarrow\left|x-7\right|+6-x\ge x-7+6-x\)

\(\Leftrightarrow\left|x-7\right|+6-x\ge-1\)

Dấu " = " xảy ra khi x=7

Vậy MINA= - 1 khi x=7

( Sử dụng bđt \(\left|A\right|\ge A\) )

NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:59

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

trần thị ngọc trâm
Xem chi tiết
cherrylovejk_2407
Xem chi tiết
Trên con đường thành côn...
26 tháng 8 2021 lúc 14:56

undefined

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 14:57

b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)

\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)

\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)

Meoww
Xem chi tiết
Lê Ng Hải Anh
3 tháng 7 2018 lúc 16:15

a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)

                \(=x^2-6x+9-9\)

                \(=\left(x-3\right)^2-9\)

Vì: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)

Hay: \(A\ge-9\forall x\)

Dấu = xảy ra khi (x-3)^2=0 

                   <=>x=3

Vậy Min A= -9 tại x=3

b,Ta có: \(B=-3x\left(x+3\right)-7\)

                  \(=-3x^2-9x-7\)

                   \(=-3\left(x^2+3x+\frac{7}{3}\right)\)

                     \(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)

                      \(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)

                        \(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)

Hay \(B\le\frac{-1}{4}\forall x\)

Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)

\(\Rightarrow x=\frac{-3}{2}\)

Vậy Max B=-1/4 tại x=-3/2

                 

Không Tên
3 tháng 7 2018 lúc 16:08

a)  \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)

Vậy Min A = -9 khi x = 3

b)  \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)

          \(=-3\left(x+4,5\right)^2+53,75\le53,75\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)

Vậy Max B = 53,75 khi x = -4,5

Không Tên
3 tháng 7 2018 lúc 16:17

câu b mk lm nhầm, bn tham khảo của MIYANO SHINO nhé

Trương Tuấn Dũng
Xem chi tiết
o0o I am a studious pers...
9 tháng 8 2016 lúc 20:37

\(7\left|x\right|-5\left|y\right|=5\left|x\right|+2\left|x\right|-\left(8\left|y\right|-4\left|y\right|\right)\)

\(=5\left|x\right|+2\left|x\right|-8\left|y\right|+4\left|y\right|\)

\(=6+2\left|x\right|-8\left|y\right|\ge6\)

\(MinA=6\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Đặng Quỳnh Ngân
9 tháng 8 2016 lúc 21:04

-8/y/ <0 nếu y = 100000000 thì -8/10000000/ = -800000000 tính sao đây?

shin yeu
Xem chi tiết
Hoàng Thanh Tâm
16 tháng 8 2017 lúc 10:45

nothing. 

ST
16 tháng 8 2017 lúc 13:12

- Với \(x\ge7\) thì \(x-7\ge0\Rightarrow\left|x-7\right|=x-7\), thay vào A ta có:

\(A=x-7+6-x=-1\) (1)

- Với x < 7 thì x - 7 < 0 => |x - 7| = 7 - x, thay vào A ta có:

A = 7 - x + 6 - x = -2x + 13

Vì x < 7 nên -2x > -14 => -2x + 13 > -1 hay A > -1 (2)

Từ (1) và (2) => \(A\ge-1\)

Vậy GTNN của A = -1 khi x \(\ge\) 7

()
Xem chi tiết
Nguyễn Nhật Minh
4 tháng 2 2019 lúc 10:12

Trước hết ta chứng minh bổ đề: \(|a|+|b|\ge|a+b|.\left(1\right)\)

CM: \(\left(1\right)\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(|a+b\right)^2\)

                  \(\Leftrightarrow a^2+b^2+2|ab|\ge a^2+b^2+2ab\)

                  \(\Leftrightarrow2|ab|\ge2ab\)

                  \(\Leftrightarrow\left|ab\right|\ge ab\)(điều này đúng do tính chất của giá trị tuyệt đối).

Vậy ta có đpcm. Dấu bằng xảy ra \(\Leftrightarrow ab\ge0.\)

a) A = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|.\)

Ta thấy rằng \(\left|x-2\right|\ge0\)với mọi x.

Áp dụng bổ đề trên ta có:

\(A\ge\left|x-1+3-x\right|+0=\left|2\right|+0=2+0=2.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}}\Leftrightarrow x=2.\)

Vậy GTNN của A bằng 2 khi x = 2.

b) Áp dụng bổ đề trên ta có:\(B=\left|x-4\right|+\left|7-x\right|+\left|x-5\right|+\left|6-x\right|\ge\left|x-4+7-x\right|+\left|x-5+6-x\right|=\left|3\right|+\left|1\right|=3+1=4.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)\left(7-x\right)\ge0\\\left(x-5\right)\left(6-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow}5\le x\le6}\)(vì với mọi x nằm giữa 5 và 6 thì cũng nằm giữa 4 và 7).

Vậy GTNN của B bằng 4 khi \(5\le x\le6.\)

Đặng Tú Phương
4 tháng 2 2019 lúc 20:41

a;\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

Ta có +) \(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)

+)\(\left|x-2\right|\ge0\)Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)

\(\Rightarrow A_{min}=2\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow x=2}\)

b;\(B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|6-x\right|+\left|7-x\right|\)

Ta có +) \(\left|x-4\right|+\left|7-x\right|\ge\left|x-4+7-x\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)\left(7-x\right)\ge0\Leftrightarrow4\le x\le7\)

+) \(\left|x-5\right|+\left|6-x\right|\ge\left|x-5+6-x\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(6-x\right)\ge0\Leftrightarrow5\le x\le6\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\ge4\)

\(\Rightarrow B_{min}=4\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow5\le x\le6}\)