cho \(a>b>0.CMR:\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)
Cho a > b > 0. CMR: \(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)
\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)
\(\Leftrightarrow2ab-2b^2+2\sqrt{a^2-b^2}.\sqrt{2ab-b^2}>0\)
Cái nãy đúng vì \(0< b< a\)
Vậy có ĐPCM
√a2−b2+√2ab−b2>a
⇔2ab−2b2+2√a2−b2.√2ab−b2>0
Cái nãy đúng vì 0<b<a
Vậy có ĐPCM
cho a,b,c >0 tm a+b+c=3
CMR: \(\sqrt{1+a^2+2bc}+\sqrt{1+b^2+2ac}+\sqrt{1+c^2+2ab}\le6\)
đặt A=...
Áp dúng bất đẳng thức bu nhi a ta có
\(A^2\le3\left(1+a^2+2bc+1+b^2+2ac+1+c^2+2ab\right)=3\left[\left(a+b+c\right)^2+3\right]\)
=> \(A^2\le36\Rightarrow A\le6\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
CMR:\(\sqrt{a^2+2bc}+\sqrt{b^2+2ac}+\sqrt{c^2+2ab}\le\sqrt{3}\left(a+b+c\right)\)( với a,b,c>0)
Ta có BĐT: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).
BĐT trên dễ dàng chứng minh được bằng cách sử dụng phép biến đổi tương đương.
Do đó: \(\left(\sum\sqrt{a^2+2bc}\right)^2\le3\left(\sum a^2+2\sum bc\right)=3\left(a+b+c\right)^2\)
\(\Rightarrow\sum\sqrt{a^2+2bc}\le\sqrt{3}\left(a+b+c\right)\)
GIÚP EM BÀI NÀY GẤP ĐƯỢC KHÔNG Ạ!!! HIHI
Cho a,b,c>0
CMR
a/((b+c)*sqrt(a^2+2bc))+b/((a+c)*sqrt(b^2+2ac)) + c/((b+c)*sqrt(c^2+2ab) >= 3/(2*sqrt(a^2+b^2+c^2)). ^_^
Cho a,b\(\in\)R thỏa mãn \(a^2+b^2>0\)
CMR \(\dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{9a^2+b^2}}+\dfrac{2ab}{\sqrt{a^2+b^2}.\sqrt{9a^2+b^2}}\le\dfrac{3}{2}\)
Do \(a\le\left|a\right|,b\le\left|b\right|\) nên ta chỉ cần chứng minh
\(\dfrac{\left|a\right|}{\sqrt{a^2+b^2}}+\dfrac{\left|b\right|}{\sqrt{9a^2+b^2}}+\dfrac{2\left|a\right|\left|b\right|}{\sqrt{a^2+b^2}.\sqrt{9a^2+b^2}}\le\dfrac{3}{2}\)
Đặt \(a^2=x,b^2=3y^2\)
\(P=2\sqrt{\dfrac{x}{x+3y}}+2\sqrt{\dfrac{y}{y+3x}}+4\sqrt{\dfrac{xy}{\left(x+3y\right)\left(y+3x\right)}}\le3\)
Sử dụng BĐT AM-GM, ta có
\(2\sqrt{\dfrac{x}{x+3y}}\le\dfrac{x}{x+y}+\dfrac{x+y}{3x+y},2\sqrt{\dfrac{y}{y+3x}}\le\dfrac{y}{x+y}+\dfrac{x+y}{y+3x}\)\(4\sqrt{\dfrac{xy}{\left(x+3y\right)\left(y+3x\right)}}\le\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}+\dfrac{1}{2}\)
Cộng ba bất đẳng thức trên vế theo vế
\(P\le\dfrac{3}{2}+\dfrac{x+y}{x+3y}+\dfrac{x+y}{y+3x}+\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}\)
Và do đó chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng:
\(\dfrac{x+y}{x+3y}+\dfrac{x+y}{y+3x}+\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}\le\dfrac{3}{2}\)
Ta có: \(\dfrac{3}{2}-\dfrac{x+y}{x+3y}-\dfrac{x+y}{y+3x}-\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}=\dfrac{3}{2}-\dfrac{4\left(x+y\right)^2+8xy}{\left(x+3y\right)\left(y+3x\right)}=\dfrac{\left(x-y\right)^2}{2\left(x+3y\right)\left(y+3x\right)}\ge0\)Bài toán được chứng minh xong. Đẳng thức xảy ra khi \(b=\sqrt{3}a>0\)
CMR : a + b + 2a2+ 2b2 ≥ 2ab + 2b\(\sqrt{a}+2a\sqrt{b}\) ( a,b ≥ 0)
a + b + 2a2 + 2b2 ≥ \(2ab+2a\sqrt{b}+2b\sqrt{a}\)
⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0
⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0
⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )
Cho các số dương a, b, c thỏa mãn: a+b+c=3 và \(M=\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\). CMR: \(M\ge3\sqrt{5}\)
\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)
\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)
\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)
\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)
Cách khác:
Áp dụng BĐT Bunhiacopxky:
$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$
$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$
Tương tự với các căn thức còn lại và cộng theo vế:
$M\sqrt{5}\geq 5(a+b+c)$
$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
cho a,b>2 cmr\(\sqrt{a}\sqrt{ab-a}+\sqrt{b}\sqrt{ab-b}\le\sqrt{\left(a+b\right)\left(-a-b-2ab\right)}\)
Cho a,b dương CMR
\(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge\sqrt{ab}+\frac{a+b}{2}\)
BĐT<=>
\(\left(\frac{2ab}{a+b}-\frac{a+b}{2}\right)+\left(\sqrt{\frac{a^2+b^2}{2}}-\sqrt{ab}\right)\ge0\)
<=> \(-\frac{\left(a-b\right)^2}{2\left(a+b\right)}+\frac{\frac{a^2+b^2}{2}-ab}{\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}}\ge0\)
<=> \(\frac{\left(a-b\right)^2}{2(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab})}-\frac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)
<=> \(a+b\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{ab}\)
<=> \(\frac{a^2+b^2}{2}+ab\ge2\sqrt{\frac{a^2+b^2}{2}.ab}\)luôn đúng
=> ĐPCM
Dấu bằng xảy ra khi a=b