§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Duyên

Cho a,b\(\in\)R thỏa mãn \(a^2+b^2>0\)

CMR \(\dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{9a^2+b^2}}+\dfrac{2ab}{\sqrt{a^2+b^2}.\sqrt{9a^2+b^2}}\le\dfrac{3}{2}\)

Unruly Kid
1 tháng 3 2019 lúc 15:10

Do \(a\le\left|a\right|,b\le\left|b\right|\) nên ta chỉ cần chứng minh

\(\dfrac{\left|a\right|}{\sqrt{a^2+b^2}}+\dfrac{\left|b\right|}{\sqrt{9a^2+b^2}}+\dfrac{2\left|a\right|\left|b\right|}{\sqrt{a^2+b^2}.\sqrt{9a^2+b^2}}\le\dfrac{3}{2}\)

Đặt \(a^2=x,b^2=3y^2\)

\(P=2\sqrt{\dfrac{x}{x+3y}}+2\sqrt{\dfrac{y}{y+3x}}+4\sqrt{\dfrac{xy}{\left(x+3y\right)\left(y+3x\right)}}\le3\)

Sử dụng BĐT AM-GM, ta có

\(2\sqrt{\dfrac{x}{x+3y}}\le\dfrac{x}{x+y}+\dfrac{x+y}{3x+y},2\sqrt{\dfrac{y}{y+3x}}\le\dfrac{y}{x+y}+\dfrac{x+y}{y+3x}\)\(4\sqrt{\dfrac{xy}{\left(x+3y\right)\left(y+3x\right)}}\le\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}+\dfrac{1}{2}\)

Cộng ba bất đẳng thức trên vế theo vế

\(P\le\dfrac{3}{2}+\dfrac{x+y}{x+3y}+\dfrac{x+y}{y+3x}+\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}\)

Và do đó chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng:

\(\dfrac{x+y}{x+3y}+\dfrac{x+y}{y+3x}+\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}\le\dfrac{3}{2}\)

Ta có: \(\dfrac{3}{2}-\dfrac{x+y}{x+3y}-\dfrac{x+y}{y+3x}-\dfrac{8xy}{\left(x+3y\right)\left(y+3x\right)}=\dfrac{3}{2}-\dfrac{4\left(x+y\right)^2+8xy}{\left(x+3y\right)\left(y+3x\right)}=\dfrac{\left(x-y\right)^2}{2\left(x+3y\right)\left(y+3x\right)}\ge0\)Bài toán được chứng minh xong. Đẳng thức xảy ra khi \(b=\sqrt{3}a>0\)


Các câu hỏi tương tự
phạm thảo
Xem chi tiết
Nguyễn Thị Duyên
Xem chi tiết
Lightning Farron
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Xem chi tiết
phạm thảo
Xem chi tiết
Phạm Mỹ Châu
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết