CMR
( tanx-1)/cos4x = (sin 2x-cos 2x)/(sin 2x+cos 2x)
1+tanx=\(\frac{1}{cos^2x}\)
1+\(cos^2x\)=\(\frac{1}{sin^2x}\)
\(\frac{1}{tanx+1}+\frac{1}{cotx+1}\)= 1
\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=2\)
CM GIÙM E CẦN GẤP
a/ Tớ làm bên dưới rồi
b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)
c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)
\(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)
d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)
\(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)
\(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)
\(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)
\(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)
giúp e câu nỳ vs e cần gấp
Tìm X biết:
TanX+CosX=2
Chứng minh hệ thức: \(\frac{1+sin\left(2x\right)}{sin^2x-cos^2x}=\frac{tanx+1}{tanx-1}\)
\(\frac{1+sin2x}{sin^2x-cos^2x}=\frac{sin^2x+cos^2x+2sinx.cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\frac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)
\(=\frac{sinx+cosx}{sinx-cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{sinx}{cosx}-\frac{cosx}{cosx}}=\frac{tanx+1}{tanx-1}\)
chứng minh rằng
a) tanx(cot\(^2\)x - 1) = cotx(1 - tan\(^2\)x)
b) tan\(^2\)x - sin\(^2\)x = tan\(^2\)x.sin\(^2\)x
c) \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}\) - cos\(^2\)x = - cos\(^4\)x
a: tan x(cot^2x-1)
\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)
=cotx-tanx/cotx=cotx(1-tan^2x)
b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)
c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)
\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)
=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)
=-cos^2x*cos^2x=-cos^4x
=>ĐPCM
Rút gọn:
a. \(S=1-sin^2x+sin^4x-sin^6x+...+\left(-1\right)^nsin^{2n}x+...\) với sinx \(\ne\pm1\)
b. \(S=1+cos^2x+cos^4x+cos^6x+...+cos^{2n}x+...\) với cosx \(\ne\pm1\)
c. \(S=1-tanx+tan^2x-tan^3x+...\) với \(0< x< \dfrac{\pi}{4}\)
a.
Tổng là cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-sin^2x\end{matrix}\right.\)
Do đó: \(S=\dfrac{u_1}{1-q}=\dfrac{1}{1+sin^2x}\)
b. Tương tự, tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=cos^2x\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{1-cos^2x}=\dfrac{1}{sin^2x}\)
c. Do \(0< x< \dfrac{\pi}{4}\Rightarrow0< tanx< 1\)
Tổng trên vẫn là tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-tanx\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{1+tanx}\)
Rút gọn biểu thức:
C= \(cos^4x+cos^2x.sin^2x+sin^2x\)
D= \(\sqrt{sin^2x\left(1+cotx\right)+cos^2x\left(1+tanx\right)}\)
chứng minh: (sin^2x/1+cotx)-(cos^2x/1+tanx)=tanx-1
\(\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=\dfrac{sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}=\dfrac{sin^2x}{\dfrac{sinx+cosx}{sinx}}-\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}=\dfrac{sin^3x}{sinx+cosx}-\dfrac{cos^3x}{sinx+cosx}=\dfrac{\left(sinx-cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)}{sinx+cosx}=\dfrac{\left(sinx-cosx\right)\left(1-sinx\cdot cosx\right)}{sinx+cosx}\)???
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)
Cho hàm số \(y=\dfrac{xsinx+cosx}{tanx}\). CMR: y' + y tanx = -\(\dfrac{cos^3x}{sin^2x}\)
\(y=\dfrac{xsinx}{tanx}+\dfrac{cosx}{tanx}=x.cosx+\dfrac{cos^2x}{sinx}=x.cosx+\dfrac{1}{sinx}-sinx\)
\(y'=cosx-x.sinx-\dfrac{cosx}{sin^2x}-cosx=-x.sinx-\dfrac{cosx}{sin^2x}\)
\(\Rightarrow y'+y.tan=-x.sinx-\dfrac{cosx}{sin^2x}+x.sinx+cosx\)
\(=cosx\left(1-\dfrac{1}{sin^2x}\right)=\dfrac{-cosx\left(1-sin^2x\right)}{sin^2x}=\dfrac{-cos^3x}{sin^2x}\)
Rút gọn: 1 - Sin^2x/1+Cotx - Cos^2x/1+tanx
tích mình với
ai tích mình
mình tích lại
thanks
\(1-\frac{\sin^2x}{1+\cot x}-\frac{\cos^2x}{1+\tan x}\)
\(=1\left(\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}+\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}\right)\)
\(=1-\left(\frac{\sin^2x}{\frac{\sin x+\cos x}{\sin x}}+\frac{\cos^2x}{\frac{\cos x+\sin x}{\cos x}}\right)\)
\(=1-\left(\frac{\sin^3x}{\sin x+\cos x}+\frac{\cos^3x}{\sin x+\cos x}\right)\)
\(=1-\frac{\sin^3x+\cos^3x}{\sin x+\cos x}\)
\(=1-\)\(\frac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cos x+\cos^2x\right)}{\sin x+\cos x}\)
\(=\sin x\cos x\)