Lời giải:
Bạn xem lại đề. 2 vế không bằng nhau. Ta có:
\(\frac{\sin 2x-\cos 2x}{\sin 2x+\cos 2x}=\frac{(\sin 2x-\cos 2x)(\cos 2x-\sin 2x)}{(\sin 2x+\cos 2x)(\cos 2x-\sin 2x)}=\frac{-(\sin 2x-\cos 2x)^2}{\cos ^22x-\sin ^22x}=\frac{-(\sin ^22x+\cos ^22x-2\sin 2x\cos 2x)}{\cos 4x}\)
\(=\frac{-(1-\sin 4x)}{\cos 4x}=\frac{\sin 4x-1}{\cos 4x}\)