\(\left\{{}\begin{matrix}4x^2+7xy+3y^2=0\\x^2+4x-y=6\end{matrix}\right.\) giải hệ pt sau
giải hpt sau
\(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
giải hệ pt sau
a\(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) b\(\left\{{}\begin{matrix}3x_{ }-2y=11\\4x-5y=3\end{matrix}\right.\) c\(\left\{{}\begin{matrix}4x+3y=13\\5x-3y=_{ }-31\end{matrix}\right.\) D\(\left\{{}\begin{matrix}7X+5Y=19\\3x+5y=31\end{matrix}\right.\)
e\(\left\{{}\begin{matrix}7x-5y=3\\3x+10y=62\end{matrix}\right.\) f\(\left\{{}\begin{matrix}2x+5y=11\\3x+2y=11\end{matrix}\right.\) g\(\left\{{}\begin{matrix}x+3y=4y-x+5\\2x-y=3x-2\left(y+1\right)\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}x^2+xy+y^2+4x+3y=0\\xy+x+2y=0\end{matrix}\right.\)
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
a. ĐKXĐ: ..
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)
b.
Thế pt trên xuống dưới:
\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)
\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)
\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)
Thế vào pt đầu ...
Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}2\left(x+1\right)-3y=-10\\3x+2y+5=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x+1}{2}-\dfrac{y-2}{3}=1\\4x+3y=1\end{matrix}\right.\)
giải hệ pt sau : \(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=35\\6x^2+9y^2=12x-27y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-6x^2-9y^2=35-12x+27y\)
\(\Leftrightarrow x^3-6x^2+12x-8=y^3+9y^2+27y+27\)
\(\Leftrightarrow\left(x-2\right)^3=\left(y+3\right)^3\)
\(\Leftrightarrow x-2=y+3\)
\(\Leftrightarrow y=x-5\)
Thay vào pt dưới: \(2x^2+3\left(x-5\right)^2=4x-9\left(x-5\right)\)
\(\Leftrightarrow...\)
giải hệ PT sau
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4x-5y=9\\7x+y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}8x+2y=13\\x+y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}5x-3y=1\\2x+y=7\end{matrix}\right.\)
Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc
mk làm ví dụ một câu ha
\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)
Thay (1) vào bt (2) ta có -3(1-2y)-y=2
Bạn giải ra y rồi giải ra x là xong
giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}2x+y-5=0\\y+x^2=4x\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=2\\xy+x+y+6=0\end{matrix}\right.\)
Câu a: Thế y=5-2x rồi giải pt bậc2
Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1
Câu c: từ pt 1 suy ra 2x = 2-3y
Nhân 2 vào pt 2 rồi thế vào