Tính số đo của góc \(\beta\) biết :
\(a,\sin\beta\approx0,547\)
\(b,\cos\beta\approx0,238\)
\(c,\tan\beta\approx3,862\)
\(d,\cot\beta\approx1,295\)
Tính số đo của góc \(\beta\) biết :
\(a,\sin\beta\approx0,547\)
\(b,\cos\beta\approx0,238\)
\(c,\tan\beta\approx3,862\)
\(d,\cot\beta\approx1,295\)
[kí hiệu \(^"\) là phút, mình xin lỗi do nếu đánh hẳn kí hiệu phút nó sẽ bị lỗi phông]
a) \(\sin\beta\approx0,547\Rightarrow\beta\approx33^o10^"\)
b) \(\cos\beta\approx0,238\Rightarrow\beta\approx76^o14^"\)
c) \(\tan\beta\approx3,862\Rightarrow\beta\approx75^o29^"\)
d) \(\cot\beta\approx1,295\Rightarrow\beta\approx37^o41^"\)
Cho bạn CT chung về cách bấm góc bằng máy tính cầm tay đây
gttd: giá trị tìm được
G: góc
\(\left\{{}\begin{matrix}sin^{-1}\\cos^{-1}\\tan^{-1}\end{matrix}\right.\left(gttd\right)+\left(=\right)+\left(^{o'''}\right)\Rightarrow G\)
\(tan^{-1}\left(gttd+\left(x^{-1}\right)\right)+\left(=\right)+\left(^{o''''}\right)\Rightarrow G\)
\(a,sin\beta\approx0,547\Rightarrow\beta=33^o\)
\(b,cos\beta\approx0,238\Rightarrow\beta=76^o\)
\(c,tan\beta\approx3,862\Rightarrow\beta=75^o\)
\(d,cotg\beta\approx1,295\Rightarrow\beta=38^o\)
cho các góc α và β nhọn , α < β. Cmr:
a ) cos(β - α)=cosβcosα +sinβsinα
b) sin(β - α)=sinβcosα - sinβsinα
Cho 0°< α<β< 90°. Chứng minh:
a) sin α < tan α
b) cos α < cotan α
c) sin α < sin β
d) cos α > cos β
e) tan α < tan β
f) cotan α > cotan β
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Trong trường hợp nào dưới đây \(cos\alpha = cos\beta \) và \(sin\alpha = - sin\beta \).
\(\begin{array}{l}A.\;\beta = - \alpha \\B.\;\beta = \pi - \alpha \\C.\;\beta = \pi + \alpha \\D.\;\beta = \frac{\pi }{2} + \alpha \end{array}\)
+) Xét \(\beta = - \alpha \), khi đó:
\(\begin{array}{l}cos\beta = cos\left( {-{\rm{ }}\alpha } \right) = cos\alpha ;\\sin\beta = sin\left( {-{\rm{ }}\alpha } \right) = -sin\alpha \Leftrightarrow sin\alpha = -sin\beta .\end{array}\)
Do đó A thỏa mãn.
Đáp án: A
Biết rằng \(\tan\alpha,\tan\beta\) là các nghiệm của phương trình x2-px+q=0 thế thì giá trị của biểu thức \(A=\cos^2\left(\alpha+\beta\right)+p\sin\left(\alpha+\beta\right).\cos\left(\alpha+\beta\right)+q\sin^2\left(\alpha+\beta\right)\) bằng:
Chứng minh các đẳng thức :
a) \(\dfrac{\tan\alpha-\tan\beta}{\cot\beta-\cot\alpha}=\tan\alpha\tan\beta\)
b) \(\tan100^0+\dfrac{\sin530^0}{1+\sin640^0}=\dfrac{1}{\sin10^0}\)
c) \(2\left(\sin^6\alpha+\cos^6\alpha\right)+1=3\left(\sin^4\alpha+\cos^4\alpha\right)\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
c) \(2\left(sin^6\alpha+cos^6\alpha\right)+1=2\left(sin^2\alpha+cos^2\alpha\right)\)\(\left(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha\right)+1\)
\(=2\left(sin^4\alpha+cos^4\alpha-sin^2\alpha cos^2\alpha\right)+1\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha-sin^2\alpha cos^2\alpha+\)\(cos^2\alpha-sin^2\alpha cos^2\alpha\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha\left(1-cos^2\alpha\right)+\)\(cos^2\alpha\left(1-sin^2\alpha\right)\)
\(=2\left(sin^4\alpha+cos^4\alpha\right)+sin^2\alpha.sin^2\alpha+cos^2\alpha.cos^2\alpha\)
\(=3\left(sin^4\alpha+cos^4\alpha\right)\).
Chung minh rang voi moi goc luong giac α lam cho bieu thuc xac dinh thi
a) \(\dfrac{1-sin2\alpha}{1+sin2\alpha}\)=cot\(^2\)(\(\dfrac{\pi}{4}\)+α) b) \(\dfrac{sin\alpha+sin\beta cos\left(\alpha+\beta\right)}{cos\alpha-sin\beta sin\left(\alpha+\beta\right)}\)=tan\(\left(\alpha+\beta\right)\).
a, \(\dfrac{1-sin2a}{1+sin2a}\)
\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)
\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)
\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)
b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)
\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)
\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)
\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)
\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)
\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)
biết tanα,tanβ là các nghiệm của phương trình x^2-px+q=0 tính A=cos^2(α+β)+psin(α+β).cos(α+β)+qsin^2(α+β)
Theo Viet ta có \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)
\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)
\(A=cos^2\left(a+b\right)\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)
\(A=\frac{1}{1+tan^2\left(a+b\right)}\left[1+\frac{p^2}{1-q}+\frac{q.p^2}{\left(1-q\right)^2}\right]\)
\(A=\frac{\left(1-q\right)^2}{p^2+\left(1-q\right)^2}\left(1+\frac{p^2}{\left(1-q^2\right)}\right)\)
\(A=\frac{\left(1-q^2\right)}{p^2+\left(1-q\right)^2}.\left(\frac{p^2+\left(1-q\right)^2}{\left(1-q\right)^2}\right)=1\)