1. Tính:
a) ( x2 - y )3
2. Tổng thành tích:
a) x3 - 3x2 + 3x - 1
b) x3 + 6x2 + 12 + 8.
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
Bài 3: Phân tích đa thức sau thành nhân tử.
a) x4 + 2x2 + 1
b) 4x2 - 12xy + 9y2
c) -x2 - 2xy - y2
d) (x + y)2 - 2(x + y) + 1
e) x3 - 3x2 + 3x - 1
g) x3 + 6x2 + 12x + 8
h) x3 + 1 - x2 - x
k) (x + y)3 - x3 - y3
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)
a) x2(x-2)2-(x-2)^2 - x2 +1 b) x3-4x2+8x-8
c)1+6x-6x2-x3
d)x3-y3-3x2+3x-1
e)(x+y+z)^3-x3-y3-z3
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)
a/ $=(x-2)^2$
b/ $=(2x+1)^2$
c/ $=(4x-3y)(4x+3y)$
d/ $=(1-x)(x+7)$
e/ $=(-x+1)(5x-1)$
f/ $=(x-y)(x^2+xy+y^2)$
g/ $=(3+x)(9-3x+x^2)$
h/ $=(x+2)^3$
i/ $=(1-x)^3$
Bài 2: Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức
a)x2-4x+4 b)4x2+4x+1 c)16x2-9y2
d)16-(x+3)2 e)4x2-(3x-1)2 f)x3-y3
g)27+x3 h)x3+6x2+12x+8 i)1-3x+3x2-x3
giúp mình cần gấp ,mn ơi
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(4x^2+4x+1=\left(2x+1\right)^2\)
g: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
bài 3 phân tích đa thức sau thành nhân tử
a 4x2 -16 + (3x +12) (4-2x)
b x3 + X2Y -15x -15y
c 3(x+8) -x2 -8x
d x3 -3x2 + 1 -3x
e 5x2 -5y2 -20x + 20y
kkk =0)
a) \(4x^2-16+\left(3x+12\right)\left(4-2x\right)\)
\(=\left(2x-4\right)\left(2x+4\right)-3\left(x+4\right)\left(2x-4\right)\)
\(=\left(2x-4\right)\left(2x+4-3x-12\right)\)
\(=-\left(2x-4\right)\left(x+8\right)\)
b) \(x^3+x^2y-15x-15y\)
\(=x^2\left(x+y\right)-15\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-15\right)\)
c) \(3\left(x+8\right)-x^2-8x\)
\(=3\left(x+8\right)-x\left(x+8\right)\)
\(=\left(x+8\right)\left(3-x\right)\)
d) \(x^3-3x^2+1-3x\)
\(=x^3+1-3x^2-3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d) \(5x^2-5y^2-20x+20y\)
\(=5\left(x^2-y^2\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y\right)-20\left(x-y\right)\)
\(=5\left(x-y\right)\left(x+y-4\right)\)
Bài 2: Phân tích các đa thức sau thành nhân tử
a) x2 – 9 b) 4x2 -1 c) x4 - 16
d) x2 – 4x + 4 e) x3 – 8 f) x3 + 3x2 + 3x + 1
a) x² - 9
= x² - 3²
= (x - 3)(x + 3)
b) 4x² - 1
= (2x)² - 1²
= (2x - 1)(2x + 1)
c) x⁴ - 16
= (x²)² - 4²
= (x² - 4)(x² + 4)
= (x² - 2²)(x² + 4)
= (x - 2)(x + 2)(x + 4)
d) x² - 4x + 4
= x² - 2.x.2 + 2²
= (x - 2)²
e) x³ - 8
= x³ - 2³
= (x - 2)(x² + 2x + 4)
f) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
Bài 1 : Tính
a, x(x2 + 5 )
b, (3x -5 )(2x + 1 ) - (6x2 - 5 )
c, ( 2x + 3)(2x - 3 ) - ( 2x + 1)2
d, ( 2x4 + x3 - 3x2 + 5x - 2 ) : ( x2 - x + 1 )
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
b, x2 - 2x - y2 + 1
Các bạn ơi ! giúp mik với !! Mai kiểm tra rồi
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b, x2 - 2x - y2 + 1
\(=x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
vt mũ hộ mk đuy bạn :
\(x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x^2-x\right)\left(x-1\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
Bài 1 :
a) \(x\left(x^2+5\right)\)
\(=x^3+5x\)
bài 1 phân tích các đa thức sau thành nhân tử
a) x2 + 4x +3 b) 16x - 5x2 - 3 c) 2x2 + 7x + 5
d) 2x2 + 3x -5 e) x3 - 3x2 + 1 - 3x f ) x2 - 4x - 5
g) (a2 + 1 )2 - 4a2 h) x3 - 3x2 - 4x + 12 i) x4 + x3 + x + 1
k) x4 - x3 - x2 + 1 l ) (2x + 1 )2 - ( x - 1 )
\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)