Giải pt
\(3t^2-9t+16=0\)
Cho phương trình : \(cot^23x-3cot3x+2=0\) . Đặt \(t=cotx\) , ta được phương trình nào sau đây ?
A . \(t^2-3t+2=0\)
B . \(3t^2-9t+2=0\)
C . \(t^2-9t+2=0\)
D . \(t^2-6t+2=0\)
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn .
Câu B nha!
Theo như mình thấy thì nhìn rồi nhẩm thôi.
giải pt
$3a^3+10a^2+14a-16=0$
Giải pt ẩn x
x^2 - 10^x +16=0
\(x^2-10^x+16=0\)
\(\Leftrightarrow x^2-8x-2x+16=0\)
\(\Leftrightarrow\left(x-8\right).\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy ....................
Chúc bạn học tốt!
1/ vẽ ĐTHS y=1/4x^2
2/ vẽ ĐTHS y=-4x^2
3/ giải pt
X^2 +15x - 16= 0
X^2 +17x + 16= 0
X^2 - 5x + 1= 0
4x^2 + 4x + 1 = 0
4/ ko giải pt hãy tính x1 + x2 ; x1 nhân x2 ; x1^2 + x2^2 với x1,x2 là 2 nghiệm của pt ( nếu có) của các pt sau
X2 - 5x + 1= 0
2x^2 - 3x - 1= 0
5/ cho pt x^2 + 4x + m= 0 ,m là tham số
Tìm để để pt trên có 2 nghiệm cùng dấu
Tìm m để pt trên có 2 nghiệm trái dấu
(2) giải pt: \(\sqrt{x^2-16}-2\sqrt{x+4}=0\)
giúp mk vs ạ, mai mk hc rồi
\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{x-4}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=8\end{matrix}\right.\)
giải pt
\(x^4-16x^2+32x-16=0\)
\(x^4-16x^2+32x-16=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2-12x^2+24x+8x-16=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-12x\left(x-2\right)+8\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x^2-4x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-2\right)+4x\left(x-2\right)-4\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy.............
\(x^4-16x^2+32x-16=0\)
\(\Leftrightarrow x^4-16\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^4-16\left(x-1\right)^2=0\)
\(\Leftrightarrow x^4-\left(4\left(x-1\right)\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\left(x-1\right)\right).\left(x^2+4\left(x-1\right)\right)=0\)
\(\Leftrightarrow\left(x^2-4x+4\right).\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\) hoặc \(x^2+4x-4=0\)
1) \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(2\)) \(x^2+4x-4=0\Leftrightarrow x^2+4x+4-8=0\)
\(\Leftrightarrow\left(x+2\right)^2=8\)
\(\Leftrightarrow x+2=\sqrt{8}\) hoặc \(x+2=-\sqrt{8}\)
\(\Leftrightarrow x=\sqrt{8}-2\) \(x=-\sqrt{8}-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;\sqrt{8}-2;-\sqrt{8}-2\right\}\)
\(x^4-16x^2+32x-16=0\)
\(\Leftrightarrow\left(x^4-16\right)-\left(16x^2-32x\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-16x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2-12x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x^2+4x^2-8x^2-4x+8\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+4x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2+2\sqrt{2}\\x=-2-2\sqrt{2}\end{matrix}\right.\)
Vậy x có tập \(n_o\) \(S=\left\{2;-2+2\sqrt{2};-2-2\sqrt{2}\right\}\)
Giải PT :
\(\left(x^2+x-2\right)^2+10x^2+5x-16=0\)
giải pt: \(x^4-9x^2-24x-16=0\)
tương tự như phần vừa nãy nha bạn tự giải được kết quả x=-1 và x=4 là đúng
1) Giải PT : \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\) 2)Cho PT : \(x^2-2x-5=0\)Không giải pt hãy tính giá trị biểu thức : A = \(x_1^3-2x_2^2-5x_1+8x_2+2019\)với \(x_1,x_2\)là 2 nghiệm của PT