cho a+b =2 tìm gtnn của bt P =\(\left(a^4+1\right)\left(b^4+1\right)\)+2013
Tìm GTNN của BT
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm
vì vậy mình sẽ ko cho bạn
Uk hiểu rồi từ này về sau sẽ tránh câu hỏi của bạn. Yên tâm.
\(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a, rút gọn bt.
b,tìm GTNN của M
\(a,\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{x^2+1}\)
\(=\frac{x^2+2}{x^2+1}\)
b, biển đổi \(M=1-\frac{3}{x^2+1}\)
M bé nhất khi \(\frac{3}{x^2+1}\)lớn nhất
\(\Leftrightarrow x^2+1\)bé nhất \(\Leftrightarrow x^2=0\)
\(\Rightarrow x=0\Rightarrow\)M bé nhất =-2
a)Tìm GTNN của \(\left(x+1\right)^2+2\left(x+1\right)^4\)
b)Tìm GTNN của \(\left(x-1\right)^4+\left(x+5\right)^4-123\)
a) GTNN = 0 khi x = -1
b) GTNN = 503 khi x =0
a0Timf GTNN của bt A=\(\left(2x+\frac{1}{3}\right)^4-1\)
b)Tìm GTLN của bt B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
GIÚP MIK NHA, 5 NGƯỜI ĐẦU ĐÚNG MIK TICK
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
Tìm GTNN và GTLN mà
TÌM GTNN của bt
a) \(2x^2-4xy+4y^2+2x+5\)
b) \(x\left(1-x\right)\left(x-3\right)\left(4-x\right)\)
a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)
b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)
=(x^2-4x)(x^2-4x+3)
Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4
Dấu= xảy ra khi t=-3/2 >>>tìm x
Cho a, b, c là ba số thực dương và abc = 1. Tìm GTNN của biểu thức: A = \(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}+\frac{1}{b^4\left(1+c\right)\left(1+a\right)}+\frac{1}{c^4\left(1+a\right)\left(1+b\right)}\)
\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:
\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu = xảy ra khi x=y=z=1 hay a=b=c=1
VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
Help me
Cho a,b > 1 và a + b \(\ge\) 4 . Tìm GTNN của P = \(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{b^4}{\left(a-1\right)^3}\)
\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)
\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)
Cộng vế với vế:
\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)
\(\Rightarrow P\ge\dfrac{512}{27}\)
Dấu "=" xảy ra khi \(a=b=4\)
Cho a,b,C>0 thỏa mãn an+bc+ca=1.Tìm GTNN M=\(\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+b^2\right)}\)
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)