Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^4+1)(b^4+1)=(a^4+1)(1+b^4)\geq (a^2+b^2)^2\)
\((a^2+b^2)(1+1)\geq (a+b)^2=4\Rightarrow a^2+b^2\geq \frac{4}{2}=2\)
Do đó: \((a^4+1)(b^4+1)\geq (a^2+b^2)^2\geq 4\)
\(\Rightarrow P=(a^4+1)(b^4+1)+2013\geq 4+2013=2017\)
Vậy \(P_{\min}=2017\Leftrightarrow a=b=1\)