Phân tích các đa thức sau thành nhân tử:
a) x^3+2x^2y+xy^2−9x
hãy phân tích các đa thức sau thành nhân tử:
a) 2/5x(y-1)-2/5y(y-1)
b) x^3 + 2x^2y+ xy^2 - 9x
a: \(=\dfrac{2}{5}\left(xy-x-y^2+1\right)\)
\(=\dfrac{2}{5}\left[x\left(y-1\right)-\left(y-1\right)\left(y+1\right)\right]\)
\(=\dfrac{2}{5}\left(y-1\right)\left(x-y-1\right)\)
b: \(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left(x+y-3\right)\left(x+y+3\right)\)
Phân tích các đa thức sau thành nhân tử:
a)6x^2y
b)x^2(x-y)+4(y-x)
c)x^3+2x^2y+xy^2-4x
a: 6x-2y=2(3x-y)
b: =(x-y)(x-2)(x+2)
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
ko phân tích dc
b: =(x-y)(x-2)(x+2)
Phân tích các đa thức sau thành nhân tử:
a) x^{3}-3x^{2}y+4x-12y
b) 4x^{2}-y^{2}+4y-4
c) 9x^{2}-6x-y^{2}+2y
a) $x^3-3x^2y+4x-12y$
$=(x^3-3x^2y)+(4x-12y)$
$=x^2(x-3y)+4(x-3y)$
$=(x-3y)(x^2+4)$
b) $4x^2-y^2+4y-4$
$=4x^2-(y^2-4y+4)$
$=(2x)^2-(y^2-2\cdot y\cdot2+2^2)$
$=(2x)^2-(y-2)^2$
$=[2x-(y-2)][2x+(y-2)]$
$=(2x-y+2)(2x+y-2)$
c) $9x^2-6x-y^2+2y$
$=(9x^2-y^2)-(6x-2y)$
$=[(3x)^2-y^2]-2(3x-y)$
$=(3x-y)(3x+y)-2(3x-y)$
$=(3x-y)(3x+y-2)$
$\text{#}Toru$
phân tích các đa thức sau thành nhân tử:
a,3x2-6xy+3y2
b,xy-9x+y-9
a,3x2-6xy+3y2
= 3(x2- 2xy+ y2)
= 3(x- y)2
b,xy-9x+y-9
= (xy+ y)- (9x+ 9)
= y(x+ 1)- 9(x+ 1)
= (x+1)(y- 9)
Chúc bạn học tốt
a,\(3x^2-6xy+3y^2\)
=\(3\left(x^2-2xy+y^2\right)\)
=\(3\left(x-y\right)^2\)
b,xy-9x+y-9
=\(\left(xy+y\right)-\left(9x+9\right)\)
=\(y\left(x+1\right)-9\left(x+1\right)\)
=\(\left(x+1\right)\left(y-9\right)\)
a) Ta có: \(3x^2-6xy+3y^2\)
\(=3\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)^2\)
b) Ta có: \(xy-9x+y-9\)
\(=x\left(y-9\right)+\left(y-9\right)\)
\(=\left(y-9\right)\left(x+1\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 2(x -1)^ 3 - 5(x -1)^ 2 - (x - 1);
b) x(y - x)^ 3 - y(x - y)^ 2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y) ^2 - y(x + y)^ 2 + y^ 2 (x - y).
a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)
\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)
\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)
\(=\left(x-1\right)\left(2x^2-9x+6\right)\)
b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)
\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)
\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)
a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)
b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)
c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)
d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)
\(a.2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\\ =\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\\ =\left(x-1\right)\left(2x^2-9x+6\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x^3-4x^2+4x
b) x^2-2xy+y^2-9
c)2x^3-x^2-8x+4
d) x^2-y^2-5x+5y
e) 3x^2-6xy+3y^2-12z^2
f) x^3-4x^2+4x-xy^2
g) x^3-2x^2y+xy^2-25x
h) x^3-3x+2
i) 3x^2-7x-10
\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)
Phân tích các đa thức sau thành nhân tử:
a, x²y + xy³ – xy – y³
b, 2x² + 5x + 8
c, x² – 10x + 21
c: \(x^2-10x+21=\left(x-3\right)\left(x-7\right)\)
a: \(x^2y+xy^3-xy-y^3\)
\(=xy\left(x-1\right)+y^3\left(x-1\right)\)
\(=y\left(x-1\right)\left(x+y^2\right)\)
Phân tích các đa thức sau thành nhân tử:
a, x²y + xy³ – xy – y³
b, 2x² + 5x + 8
c, x² – 10x + 21
\(a) x^2y+xy^3-xy-y^3\\=(x^2y+xy^3)-(xy+y^3)\\=xy(x+y^2)-y(x+y^2)\\=(x+y^2)(xy-y)\\=y(x+y^2)(x-1)\\b)2x^2+5x+8(xem lại đề)\\c)x^2-10x+21\\=x^2-3x-7x+21\\=x(x-3)-7(x-3)\\=(x-3)(x-7)\)
\(a,=xy\left(x+y^2\right)-y\left(x+y^2\right)=y\left(x+y^2\right)\left(x-1\right)\\ c,=x^2-7x-3x+21=\left(x-7\right)\left(x-3\right)\)
a, \(x^2y+xy^2-xy-y^3=y\left(x^2+xy-x-y^2\right)\)
c, \(x^2-10x+21=\left(x-3\right)\left(x-7\right)\)
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)