Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quang Ngo van
Xem chi tiết
Fujika Midori
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 22:18

a: khi m=2 thì (d): y=4x-2^2+1=4x-3

PTHĐGĐ:

x^2-4x+3=0

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

b: PTHĐGĐ là;

x^2-2mx+m^2-1=0

Δ=(-2m)^2-4(m^2-1)=4>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

2y1+4m*x2-2m^2-3<0

=>2(2mx1-m^2+1)+4m*x2-2m^2-3<0

=>4m*x1-2m^2+2+4m*x2-2m^2-3<0

=>-4m^2+4m*(x1+x2)-1<0

=>-4m^2+4m*(2m)-1<0

=>-4m^2+8m-1<0

=>\(\left[{}\begin{matrix}m< \dfrac{2-\sqrt{3}}{2}\\m>\dfrac{2+\sqrt{3}}{2}\end{matrix}\right.\)

Nguyễn Hải Đăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 0:46

a: Δ//d

=>Δ: 2x-y+c=0

Thay x=1 và y=-2 vào Δ, ta được:

c+2+2=0

=>c=-4

b: B thuộc d nên B(x;2x+3)

M(1;-2); A(0;3)

\(\overrightarrow{MA}=\left(-1;5\right);\overrightarrow{MB}=\left(x-1;2x+5\right)\)

ΔBAM vuông tại M

=>-1(x-1)+5(2x+5)=0

=>-x+1+10x+25=0

=>9x=-26

=>x=-26/9

=>B(-26/9;-25/9)

cielxelizabeth
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 5 2020 lúc 19:06

Khi \(m=5\) pt (d) có dạng: \(y=-5x-2\)

Phương trình hoành độ giao điểm (d) và (P):

\(2x^2=-5x-2\Leftrightarrow2x^2+5x+2=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-2\end{matrix}\right.\)

Với \(x=-\frac{1}{2}\Rightarrow y=2x^2=\frac{1}{2}\)

Với \(x=-2\Rightarrow y=2x^2=8\)

Vậy có 2 giao điểm: \(\left(-\frac{1}{2};\frac{1}{2}\right)\)\(\left(-2;8\right)\)

ttl169
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2022 lúc 22:20

Phương trình hoành độ giao điểm là:

\(x^2-2x-m^2-m+3=0\)

\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)

\(=4+4m^2+4m-12=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0

=>m=-2(loại) hoặc m=1(nhận)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:05

a) Cho \(x=0\Rightarrow y=-2\)

Cho \(y=0\Rightarrow x=1\)

Nối hai điểm (0;-2) và (1;0) ta được:

b) Thay tọa độ điểm M vào bất phương trình (3) ta được:

\(2.2 - \left( { - 1} \right) > 2 \Leftrightarrow 5 > 2\)(Luôn đúng)

Vậy (2;-1) là một nghiệm của bất phương trình (3)

c) Ta gạch đi nửa mặt phẳng không chứa M được:

Nguyễn Lương Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 7:34

Lời giải:
PT hoành độ giao điểm:
$3x+m-2=-2x+6m+3$
$\Leftrightarrow 5x=5m+5$
$\Leftrightarrow x=m+1$

$y=3x+m-2=3(m+1)+m-2=4m+1$
Vậy tọa độ giao điểm của $(d)$ và $(d_1)$ là $I(m+1, 4m+1)$
$I$ thuộc đường tròn $(O)$ bán kính 3

Tức là $OI=3$

$\Leftrightarrow \sqrt{(m+1)^2+(4m+1)^2}=3$

Giải pt trên suy ra $m=-1$ hoặc $m=\frac{7}{17}$

 

Nguyễn Đăng Khoa
Xem chi tiết
Lê Tiến Đạt
Xem chi tiết

Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)

\(\Delta=b^2-4ac=4-4m^3\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)

\(4\ge4m^3\)

\(1\ge m^3\)

\(1\ge m\)

Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)

Vì m >0 nên \(xAxB>0\)

Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung

Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)

\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)\(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)

\(4m^2+m+1=P\left(4m+1\right)\)

\(4m^2+m+1=4mP+P\)

\(4m^2+m+1-4mP-P=0\)

\(4m^2+m-4mP+1-P=0\)

\(4m^2+m\left(1-4P\right)+1-P=0\)

\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)

\(=1-8P+16P^2-16+16P\)

\(=-15+8P+16P^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)

\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)

Vậy minP =\(\frac{3}{4}\)

Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)

\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)

\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)

\(16m^2+4m+4-12m-3=0\)

\(16m^2-8m+1=0\)

\(m=\frac{1}{4}\)

Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)

Khách vãng lai đã xóa