Trong mặt phẳng Oxy cho (P) y=mx2 và (d) y=2x+m ( m khác 0) tìm m để )d) cắt (P) tại 2 điểm phân biệt có hoành độ là (2+ căn5)3 và (2- căn 5)3
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x ^ 2 và đường thẳng (d) có phương trình (d) v = 2x + m ^ 2 - 2m (với m là tham số)
Xác định tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là x1, và x2, thỏa mãn điều kiện x1 ^ 2 + 2x2 = 3m
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
Trong mặt tọa độ Oxy, cho đường thẳng (d): y = 2x + m2 – m + 5 và parabol (P): y = x2 . a. Với m = 1, vẽ đường thẳng (d) và parabol (P) trên cùng hệ trục tọa độ Oxy. b. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi m. c. Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn (x1 + 1)(x2 + 1) = –2. d*. Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn |2x1| – |x2| = 1.
Trong mặt phẳng toạ độ Oxy cho (P)y=mx^2(m>0) và đường thẳng (d)y=2x-m^2 a) Tìm m để (d) cắt (P) tại hai điểm phân biệt A,B.Cmr A và B nằm cùng về một phía của trục tung b) Với m tìm được ở câu a.Gọi xA,xB lần lược là hoành đồ điểm A và B.Tìm m để (P)=2/(xA+xB)+1/(4xAxB+1) đạt GTNN Giúp mk với ạ!!!!!Mk đang cần gấp Mk cảm ơn trước!!!
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m1.
Với m = 3, hãy:a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.2. Tìm các giá trị của m để:
1) (d) và (P) tiếp xúc nhau.
2) (d) cắt (P) tại hai điểm phân biệt
Trong mặt phẳng tọa độ Oxy cho đường thẳng [ d ] ; 2x - y - a =0 và parabol [ P] ; y= ax2 [ a >0)
a, Tìm a để [ d ] cắt [ P ] tại 2 điểm phân biệt A, B . Chứng minh rằng khi đó A , B nằm bên phải trục tung
b, Gọi xA và xB là hoành độ của A, B , tìm giá trị nhỏ nhất của biểu thức T= 4/ xA + xB + 1 / xA . xB
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y=ax+b ( a,b là tham số) tìm a,b để (d) có hệ số góc bằng 3 và cắt đường thẳng (A): y = 2x + 3 tại điểm có tung độ bằng 5