Biết 4cos^4x -2cos4x-1/2cos8x=a/b. tính a^2+b^2
Chứng minh: \(sin9x=sinx\left(1+2cos2x+2cos4x+2cos6x+2cos8x\right)\)
a) 4cos5xsinx-4sin5xcosx=sin24x
b) 4cos2(2-6x) +16cos2(1-3x)=13
a)\(4sin^3xcos3x+4cos^3xsin3x+3\sqrt{3}cos4x=3\)
b)\(2sin^2x\left(4sin^4x-1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)
2 câu này giải như nào ạ
a
\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)
\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)
\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)
Tới đây thôi, mình lười ghi rồi =))
b
\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)
\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)
\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)
\(\Leftrightarrow4cos^22x+3=0\)
=> pt vô nghiệm
Biết x1, x2 là hai nghiệm của phương trình: log7\(\left(\dfrac{4x^2-4x+1}{2x}\right)+4x^2+1=6x\) và x1 +2x2 = \(\dfrac{1}{4}\left(a+\sqrt{b}\right)\) với a, b là hai số nguyên dương. Tính a +b
\(log_7\left(4x^2-4x+1\right)-log_72x+4x^2+1=6x\)
\(\Leftrightarrow log_7\left(4x^2-4x+1\right)+4x^2-4x+1=log_72x+2x\)
\(\Rightarrow4x^2-4x+1=2x\)
\(\Rightarrow...\)
log7(4x2−4x+1)−log72x+4x2+1=6xlog7(4x2−4x+1)−log72x+4x2+1=6x
=log7(4x2−4x+1)+4x2−4x+1=log72x+2x⇔log7(4x2−4x+1)+4x2−4x+1=log72x+2x
=4x2−4x+1=2x⇒4x2−4x+1=2x
= 2x
A = 4x + y ; B = 16x ^ 2 - 8xy + y ^ 2 . a) Tính AB . b) Tính giá trị của AB biết x = 1, y = - 1 . c) Ti * m_{x} biết A.B=0;6
\(a,AB=\left(4x+y\right)\left(16x^2-8xy+y^2\right)=\left(4x+y\right)\left(4x-y\right)^2\\ b,x=1;y=-1\Leftrightarrow AB=\left(4-1\right)\left(4+1\right)^2=3\cdot25=75\\ c,AB=0\Leftrightarrow\left(4x+y\right)\left(4x-y\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}4x=-y\\4x=y\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{y}{4}\\x=\dfrac{y}{4}\end{matrix}\right.\)
giúp với ạ
cho đa thức :A(x)=x^4-4x^3+2x^2-5x+6.
a, tính giá trị đa thức A(x) biết |4x-1|=1 .
b, tìm đa thức B(x) biết : a(x) -b(x) = 3x^2-x-3x^3-x^2+x^4-2x^2+6 .
c, tìm nghiêm đa thức B(x)
Ta có: Cos a =1/3, Tính : P= 3sin^2 a + 4cos^2 a
\(P=3sin^22a+4cos^22a\)
\(\Rightarrow P=3sin^22a+3cos^22a+cos^22a\)
\(\Rightarrow P=3\left(sin^22a+cos^22a\right)+\left(2cos^2a-1\right)^2\)
\(\Rightarrow P=3.1+\left(2.\dfrac{1}{9}-1\right)^2\left(cosa=\dfrac{1}{3}\right)\)
\(\Rightarrow P=3+\left(-\dfrac{7}{9}\right)^2\)
\(\Rightarrow P=3+\dfrac{49}{81}\)
\(\Rightarrow P=\dfrac{292}{81}\)
Lời giải:
$\cos ^2a=1-\sin ^2a=1-(\frac{1}{2})^2=\frac{3}{4}$
$\Rightarrow \cos a=\pm \frac{\sqrt{3}}{2}$
Nếu $\cos a=\frac{\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{\sqrt{3}}{2}=\frac{3+4\sqrt{3}}{2}$
Nếu $\cos a=\frac{-\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{-\sqrt{3}}{2}=\frac{3-4\sqrt{3}}{2}$
Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3