Chứng minh: \(sin9x=sinx\left(1+2cos2x+2cos4x+2cos6x+2cos8x\right)\)
cho tam giác ABC chứng minh rằng:
cosA+cosB-cosC= \(4cos\frac{A}{2}.cos\frac{B}{2}.sin\frac{C}{2}-1\)
Tính giá trị biểu thức sau:
\(H=cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\)
Chứng minh đẳng thức sau:
\(sinA+sinB+sinC=4cos\left(\frac{A}{2}\right)cos\left(\frac{B}{2}\right).cos\left(\frac{C}{2}\right)\). Biết A+B+C=pi
cho tam giác ABC . chứng minh:
a, sin(A+B)=sinC. ; cos (A+B)=cos-C; tan ( A+B)= -tan C
b, \(sin\frac{A+B}{2}=cos\frac{C}{2}\) ; \(cos\frac{A+B}{2}=sin\frac{C}{2}\) ; tan\(\frac{A+B}{2}=cot\frac{C}{2}\)
c, tan A+tanB+tanC= tanA.tanB.tanc( tam giác không vuông)
d, sinA+sinB+sinC= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
e, cos A+cosB+cosC= \(1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\)
f, sin2A+sin2B+sin2C= 4sinAsinBsinC
g, cos 2A+cos2B+cos2C=1-2cosAcosBcosC
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Cho \(tanx+cotx=m\). Biết \(tan^4x+cot^4x=am^4+bm^3+cm^2+dm+e\) (a,b,c,d,e thuoc R). tính giá trị của \(T=a+b+c+d+e\)