Tìm giá trị lớn nhất \(P=4sin^2+\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\)
Tìm giá trị lớn nhất M của biểu thức \(P=4sin^2x+\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\)
\(P=4sin^2x+\sqrt{2}\left(sin2x.cos\frac{\pi}{4}+cos2x.sin\frac{\pi}{4}\right)\)
\(P=4sin^2x+sin2x+cos2x\)
\(P=2\left(1-cos2x\right)+sin2x+cos2x\)
\(P=2+sin2x-cos2x\)
\(P=2+\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Do \(sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow P\le2+\sqrt{2}\)
\(\Rightarrow P_{max}=2+\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\Leftrightarrow x=\frac{3\pi}{8}+k\pi\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) \(y=f\left(x\right)=\dfrac{4}{\sqrt{5-2\cos^2x\sin^2x}}\)
b)\(y=f\left(x\right)=3\sin^2x+5\cos^2x-4\cos2x-2\)
c)\(y=f\left(x\right)=\sin^6x+\cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
giai pt:
a) \(4sin^5x.cosx-4cos^5x.sinx=sin^24x\)
b) \(4sin^2\frac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\frac{3\pi}{4}\right)\)
c) \(sin^2\left(x+\frac{\pi}{3}\right)+sinx+\sqrt{3}cosx=\frac{5}{4}\)
d) \(2sinx\left(1+cos2x\right)+sin2x=1+2cosx\)
e) \(sin^2x+4sinx.cosx+3cos^2x-sinx-3ccosx=0\)
a/
\(\Leftrightarrow4sinx.cosx\left(sin^4x-cos^4x\right)=sin^24x\)
\(\Leftrightarrow2sin2x\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^24x\)
\(\Leftrightarrow-2sin2x.cos2x=sin^24x\)
\(\Leftrightarrow-sin4x=sin^24x\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\sin4x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=k\pi\\4x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=-\frac{\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
b/
\(\Leftrightarrow2\left(1-cosx\right)-\sqrt{3}cos2x=1+1+cos\left(2x-\frac{3\pi}{2}\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=sin\left(2\pi-2x\right)\)
\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)
\(\Leftrightarrow sin2x-\sqrt{3}cos2x=2cosx\)
\(\Leftrightarrow\frac{1}{2}sin2x-\sqrt{3}cos2x=cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=cosx=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{2}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{18}+\frac{k2\pi}{3}\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{5}{4}=0\)
\(\Leftrightarrow sin^2\left(x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{3}\right)-\frac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\\sin\left(x+\frac{\pi}{3}\right)=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
a) y=f(x)=\(\dfrac{4}{\sqrt{5-2cos^2xsin^2x}}\)
b)y=f(x)=\(3sin^2x+5cos^2x-4cos2x-2\)
c)y=f(x)=\(sin^6x+cos^6x+2\forall x\in\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
tìm giá trị lớn nhất nhỏ nhất
a, y=\(sin^2x-2sinx+3cos^2x\) trên \(\left[0;\dfrac{\Pi}{2}\right]\)
b,\(y=sinx-cosx+sin2x+5\) trên \(\left[0;\dfrac{\Pi}{4}\right]\)
c,\(y=sinx-cosx+sinxcosx-3\)
a, \(y=sin^2x-2sinx+3cos^2x\)
\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)
\(=3-2sinx-2sin^2x\)
Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)
\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)
\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)
b, \(y=sinx-cosx+sin2x+5\)
\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)
Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)
\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)
\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)
\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)
c, \(y=sinx-cosx+sinx.cosx-3\)
\(=sinx-cosx-\dfrac{1}{2}\left(sinx-cosx\right)^2-\dfrac{5}{2}\)
Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)
\(\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t-\dfrac{5}{2}\)
\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-\dfrac{7+2\sqrt{2}}{2}\)
\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-2\)
Gọi M là giá trị lớn nhất của biểu thức \(S=\sin x+\sin y+\sin\left(3x+y\right)-2\sin\left(2x+y\right).\cos x\) , \(\forall x\in\left(0,2\pi\right),\forall y\in\left(0,2\pi\right)\) . Biết \(M=\dfrac{a\sqrt{b}}{c}\) (Với a,b,c \(\in Z^+,\dfrac{a}{c}\) là phân số tối giản, b < 12). Tính \(P=a+b-c\)
\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)
\(=sinx+siny-sin\left(x+y\right)\)
\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)
\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)
\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)
\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
1) \(sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
2) \(tanx=sin^2x\left(c-\frac{\pi}{2010}\right)+cos^2\left(2x+\frac{\pi}{2010}\right)+sinx.sin\left(3x+\frac{\pi}{1005}\right)\)
3) \(1+2cosx\left(sinx-1\right)+\sqrt{2}sinx+4cosx.sin^2\frac{x}{2}=0\)
4) \(3cos4x-8cos^6x+2cos4x=3\)
5) \(1+sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)\)
6) \(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-4\sqrt{3}cos^2x.sinx.cos2x\)
7) \(\frac{tan^2x+tanx}{tan^2x+1}=\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{4}\right)\)
8) \(cos^4x+sin^4x+cos\left(x-\frac{\pi}{4}\right).sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
6.
\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)
\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)
\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm giá trị max, min của các hàm số sau:
1, y= 2 - \(\sin\left(\dfrac{3\pi}{2}+x\right)\cos\left(\dfrac{\pi}{2}+x\right)\)
2, y= \(\sqrt{5-2\sin^2x.\cos^2x}\)
1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)
\(y=2-\left(-cosx\right).\left(-sinx\right)\)
y = 2 - sinx.cosx
y = \(2-\dfrac{1}{2}sin2x\)
Max = 2 + \(\dfrac{1}{2}\) = 2,5
Min = \(2-\dfrac{1}{2}\) = 1,5
2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)
Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)
Max = \(\sqrt{5}\)