\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\frac{1}{x}+\frac{1}{y}=2\end{matrix}\right.\)
Giải hpt sau:
a) \(\left\{{}\begin{matrix}\sqrt{5}x+\left(1-\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+\sqrt{5}y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{3x}{x+1}-\frac{2y}{y+4}=4\\\frac{2x}{x+1}-\frac{5y}{y+4}=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{2}{2x-y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-y}-\frac{1}{x-2y}=\frac{1}{18}\end{matrix}\right.\)
giải hệ: a, \(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt[]{x-1}+\sqrt[]{y-1}=2\\\frac{1}{x}+\frac{1}{y}=1\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x\sqrt[]{x}+y\sqrt[]{y}=35\\x\sqrt[]{y}+y\sqrt[]{x}=30\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x+xy+y=-1\end{matrix}\right.\)
e,\(\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
\(\left\{{}\begin{matrix}\sqrt{x-1}+\sqrt{y-1}=2\\\frac{1}{x}+\frac{1}{y}=1\end{matrix}\right.\left(x;y\ge1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=4\\x+y=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy-\left(x+y\right)+1}=6\\x+y=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy-xy+1}=6\\x+y=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=4\end{matrix}\right.\)
Làm nốt
1.Giải hệ phương trình:
a.\(\left\{{}\begin{matrix}2\sqrt{2}x+y=2\sqrt{2}\\7x-3y=7\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}7x+y=-\frac{1}{7}\\-\frac{4}{3}x-2y=1\frac{1}{3}\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2\sqrt{5}x+3y=\sqrt{2}\\\sqrt{5}x-y=3\sqrt{2}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y}=-5\\\frac{3}{x}-\frac{4}{y}=1\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}-\frac{5}{3x+1}+\frac{7}{2x+1}=\frac{5}{7}\\\frac{1}{3x+1}-\frac{1}{2y-3}=\frac{2}{7}\\\end{matrix}\right.\)
g.\(\left\{{}\begin{matrix}2x^2+5y^2=129\\-3x^2+y^2=13\end{matrix}\right.\)
Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{x}{y}-\frac{y}{y+12}=1\\\frac{x}{y+12}-\frac{x}{y}=2\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}3x^2+y^2=5\\x^2-3y=1\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
giải các hệ pt sau:
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\left|x-1\right|+y=5\\4x+3y=23\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy..............................................................................
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)
Vậy...................................................................................
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)
\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)
Vậy hệ pt vô nghiệm
d) Nhân 3 pt đầu rồi thu gọn
1.\(\left\{{}\begin{matrix}x\left(x-2\right)\left(2x-y\right)=6\\\left(x-3\right)^2+2y=10\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{x}}=2\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)
\(\Rightarrow\left|a\right|\le1\),\(\left|b\right|\le1\),\(\left|c\right|\le1\)
\(\Rightarrow1-a\ge0\)tương tự 1-b,1-c............
\(\Rightarrow\left(1\right)\ge0\)
dấu = khi a=1b=0c=0 và hoán vị
Đang nổi cơn làm biếng mà nhìn thấy hệ còn buồn ngủ hơn:
a/ \(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-2x\right)\left(2x-y\right)=6\\x^2-2x-2\left(2x-y\right)=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=a\\2x-y=b\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}ab=6\\a-2b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=6\\a=2b+1\end{matrix}\right.\)
\(\Rightarrow b\left(2b+1\right)=6\Leftrightarrow2b^2+b-6=0\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: ...
\(\Leftrightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)
\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)
\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}=0\)
\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}=0\)
\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}\right)=0\)
\(\Leftrightarrow\sqrt{y}=\sqrt{x}\Rightarrow x=y\)
Thay vào pt đầu:
\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)
\(\Leftrightarrow\frac{1}{x}+2-\frac{1}{x}+2\sqrt{\frac{2}{x}-\frac{1}{x^2}}=4\)
\(\Leftrightarrow\sqrt{\frac{2}{x}-\frac{1}{x^2}}=1\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}=1\)
\(\Leftrightarrow\left(\frac{1}{x}-1\right)^2=0\)
c/ \(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\x^2+y^2+x+y+xy=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\x^2+y^2=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\\left(x+y\right)^2-2xy=10\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) ta được:
\(\left\{{}\begin{matrix}a+b=7\\a^2-2b=10\end{matrix}\right.\) \(\Rightarrow a^2+2a-24=0\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=-6;b=13\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
hệ phương trình
1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)
10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)