Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh Đỗ
Xem chi tiết
⭐Hannie⭐
12 tháng 10 2023 lúc 17:44

`x^2 -4x+4-y^2`

`=(x^2 -4x+4)-y^2`

`=(x-2)^2 -y^2`

`=(x-2-y)(x-2+y)`

`x^2+2xy+y^2-x-y`

`=(x^2+2xy+y^2) -(x+y)`

`=(x+y)^2 -(x+y)`

`=(x+y)(x+y-1)`

`x^2-2xy+y^2-9`

`=(x^2-2xy+y^2)-3^2`

`=(x-y)^2-3^3`

`=(x-y-3)(x-y+3)`

Tách ra đi cậu.

ngtt
Xem chi tiết
Toru
13 tháng 9 2023 lúc 21:30

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

Đỗ Thanh Thảo
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 21:11

\(\Leftrightarrow x^2-2xy+5y^2-y+1=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-y+\dfrac{1}{16}\right)+\dfrac{15}{16}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2y-\dfrac{1}{4}\right)^2+\dfrac{15}{16}=0\) (vô nghiệm)

Ko tồn tại x; y thỏa mãn pt

Lê Đinh Hùng
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 9 2021 lúc 10:17

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Lê Đinh Hùng
Xem chi tiết
hưng phúc
21 tháng 9 2021 lúc 19:48

xy là x.y hay là x và y vậy bn

hưng phúc
21 tháng 9 2021 lúc 19:48

X và y là số nguyên phải ko

Nguyên Hoàng
Xem chi tiết
ILoveMath
28 tháng 7 2021 lúc 8:56

x2-x-y2-y=(x2-y2)-(x+y)=(x-y)(x+y)-(x+y)=(x+y)(x-y-1)

x2-xy+x-y=x(x-y)+(x-y)=(x+1)(x-y)

Lê Thị Châu Anh
Xem chi tiết
⭐Hannie⭐
4 tháng 7 2023 lúc 15:35

\(6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2+xy\right)\\ =6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2+5xy^3\\ =\left(6x^2y^2+8x^2y^2+5x^2y^2\right)+\left(-6xy^3+5xy^3\right)-8x^3\\ =19x^2y^2-xy^3-8x^3\)

Với `x=1/2;y=2` ta có :

 \(19x^2y^2-xy^3-8x^3\\ =19.\left(\dfrac{1}{2}\right)^2.2^2-\dfrac{1}{2}.2^3-8.2^3\\ =19.\dfrac{1}{4}.4-\dfrac{1}{2}.8-8.8\\ =19-4-64\\ =-49\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2017 lúc 7:52

Đáp án đúng : C

Bùi Đức Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 2 2019 lúc 3:43

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi