Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sunshine
Xem chi tiết
Nguyen
3 tháng 3 2019 lúc 12:48

*Có: \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(>\dfrac{1}{4}-\dfrac{1}{101}=\dfrac{97}{404}\)\(=\dfrac{970}{4040}\)

Có: \(\dfrac{1}{5}=\dfrac{808}{4040}\)

\(\Rightarrow\dfrac{1}{5}< A\)

*Có: \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)\(=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\)

\(\Rightarrow A< \dfrac{1}{3}\)

Vậy \(\dfrac{1}{5}< A< \dfrac{1}{3}\)

Edogawa Conan
Xem chi tiết
anh ngoc
Xem chi tiết
Nguyễn Trọng Chiến
23 tháng 2 2021 lúc 21:41

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)

locdss9
Xem chi tiết
Ngô Tấn Đạt
7 tháng 3 2018 lúc 20:13

T làm biếng lắm; làm C thôi

\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)

Làm tương tự ta được A > 1/15

ngonhuminh
9 tháng 3 2018 lúc 22:15

câu a

\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)

\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)

locdss9
7 tháng 3 2018 lúc 19:46
Lê Thị Hải Ngọc
Xem chi tiết
Nguyễn Ngọc Anh Minh
6 tháng 5 2022 lúc 7:55

Đặt biểu thức trong ngoặc đơn là B

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)

\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)

\(=5^{100}\)

Doctor Strange
Xem chi tiết
Trần Thị Thu Nga
17 tháng 10 2017 lúc 12:04

câu thứ 2 =0 vì (63.1,-21.3,6)=0

Doctor Strange
18 tháng 10 2017 lúc 19:09

MIK muốn hỏi câu đầu tiên

Xem chi tiết
Đức Huy ABC
Xem chi tiết
Cold Wind
7 tháng 7 2017 lúc 23:08

đề đúng ko? ( chỗ 2 cái phân số cuối cùng của vế trái ý)

Đức Huy ABC
8 tháng 7 2017 lúc 21:07

Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).

FAIRY TAIL
Xem chi tiết
Nguyễn Phạm Thanh Nga
11 tháng 2 2018 lúc 17:01

\(5D=1+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+...+\dfrac{1}{6.5^{99}}\)

\(6D=\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{6.5^{100}}\)

\(D=\dfrac{\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{36.5^{100}}}{6}\)