CM
\(\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
CM\(\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
*Có: \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(>\dfrac{1}{4}-\dfrac{1}{101}=\dfrac{97}{404}\)\(=\dfrac{970}{4040}\)
Có: \(\dfrac{1}{5}=\dfrac{808}{4040}\)
\(\Rightarrow\dfrac{1}{5}< A\)
*Có: \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)\(=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{5}< A< \dfrac{1}{3}\)
Tính giá trị biểu thức :
\(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\left(\dfrac{1}{6}+\dfrac{2}{6}+\dfrac{3}{6}+\dfrac{4}{6}+\dfrac{5}{6}\right)-\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\right)+...+\left(100+...+\dfrac{99}{100}\right)\)
Chứng minh \(\dfrac{1}{5}\)< \(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{99^2}\)+\(\dfrac{1}{100^2}\)<\(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)
CMR:a)\(\dfrac{1}{3}< \dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{30}< \dfrac{5}{2}\)
b)\(\dfrac{1}{5}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+.....-\dfrac{1}{99}< \dfrac{2}{5}\)
c)\(\dfrac{1}{15}< \dfrac{1}{2}.\dfrac{3}{4}......\dfrac{99}{100}< \dfrac{1}{10}\)
T làm biếng lắm; làm C thôi
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)
Làm tương tự ta được A > 1/15
câu a
\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)
\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)
Tính: A= 4.\(5^{100}\)(\(\dfrac{1}{5}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{5^3}\)+...+\(\dfrac{1}{5^{99}}\)+\(\dfrac{1}{5^{100}}\))+1
Đặt biểu thức trong ngoặc đơn là B
\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)
\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)
\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)
\(=5^{100}\)
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
Cho biểu thức \(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+...+\dfrac{1}{5^{100}}\)
CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{98}{99}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}.\)
đề đúng ko? ( chỗ 2 cái phân số cuối cùng của vế trái ý)
Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).
Rút gọn ;
D = \(\dfrac{1}{5}-\dfrac{1}{5^2}+\dfrac{1}{5^3}-\dfrac{1}{5^4}+\dfrac{1}{5^5}-\dfrac{1}{5^6}+...+\dfrac{1}{5^{99}}-\dfrac{1}{5^{100}}+\dfrac{1}{6.5^{100}}\)
\(5D=1+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+...+\dfrac{1}{6.5^{99}}\)
\(6D=\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{6.5^{100}}\)
\(D=\dfrac{\dfrac{5^{100}-1}{5^{100}}+\dfrac{1}{36.5^{100}}}{6}\)