Ta có :
+) \(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
+) \(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
.......................
+) \(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+.....+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+............+\dfrac{1}{100^2}< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+......+\dfrac{1}{100}< \dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\) \(\left(1\right)\)
Lại có :
+) \(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
+) \(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
.....................
+) \(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+........+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+.........+\dfrac{1}{100.101}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+........+\dfrac{1}{100^2}>\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Leftrightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+........+\dfrac{1}{100^2}>\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}>\dfrac{1}{5}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\)
Lại có \(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)