CHO PHƯƠNG TRÌNH x3-(m2-m+7)x-3(m2-m-2)=0.
a,Tìm các giá trị của m để một trong các nghiệm của phương trình bằng 1.
b, Giải phương trình ứng với các giá trị đó của m.
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
a) Xác định a để phương trình có một nghiệm x = – 2.
b) Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình.
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
Cho phương trình m x 2 + ( m 2 - 3 ) x + m = 0 . Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn x 1 + x 2 = 13 4 . Khi đó tổng bình phương các giá trị tìm được của tham số m bằng:
A. 265 16
B. 16
C. 9 16
D. 73 16
Phương trình có 2 nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 13 4
⇔ a ≠ 0 Δ ≥ 0 − b a = 13 4 ⇔ m ≠ 0 m 2 − 3 3 − 4 m 2 ≥ 0 − m 2 − 3 m = 13 4
⇔ m ≠ 0 m 2 − 3 − 2 m m 2 − 3 + 2 m ≥ 0 4 m 2 + 13 m − 12 = 0
⇔ m ≠ 0 m + 1 m − 3 m − 1 m + 3 ≥ 0 m = 3 4 ; m = − 4
⇔ m ≠ 0 m ∈ − ∞ ; − 3 ∪ − 1 ; 1 ∪ 3 ; + ∞ m = 3 4 ; m = − 4 ⇔ m = 3 4 m = − 4
Vậy tổng bình phương các giá trị của m là: 265 16
Đáp án cần chọn là: A
hehe 1000000% dễễễễ
Cho phương trình: x 2 – 2(m + 1)x + m 2 + m – 1 = 0. Tìm các giá trị của m để phương trình có nghiệm.
Ta có: ∆ ' = - m + 1 2 – 1.( m 2 + m – 1)
= m 2 + 2m + 1 – m 2 – m + 1 = m + 2
Phương trình có nghiệm khi ∆ ' ≥ 0 ⇒ m + 2 ≥ 0 ⇔ m ≥ -2
Vậy với m ≥ -2 thì phương trình đã cho có nghiệm.
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
1: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
2: Để phương trình có hai nghiệm trái dấu thì 2m-5<0
hay m<5/2
3: \(A=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-2\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14\)
\(=4m^2-12m+9+5\)
\(=\left(2m-3\right)^2+5\ge5\forall m\)
Dấu '=' xảy ra khi m=3/2
Cho phương trình: x2 - 2(m-1)x+ m2 -3 =0 (1) (với x là ấn số, m là tham số).
a) Giải phương trình (1) với m=-1;
b) Xác định các giá trị của m để phương trình (1) có hai nghiệm x1; x2, thoả mãn điều kiện: x12 +2(m -1)x2 = m2 +1.
Giúp mk vs
a, Thay m=-1 vào pt ta có:
\(x^2-2\left(m-1\right)x+m^2-3=0\)
\(\Leftrightarrow x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\\ \Leftrightarrow x^2+4x-2=0\\ \Leftrightarrow\left(x^2+4x+4\right)-6=0\\ \Leftrightarrow\left(x+2\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+2-\sqrt{6}\right)\left(x+2+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\\x=-2-\sqrt{6}\end{matrix}\right.\)
Cho phương trình m 2 + m + 1 x − m 2 − m + 1 = 0
a) Chứng minh phương trình là bậc nhất một ẩn với mọi giá trị của tham số m.
b) Tìm m để nghiệm của phương trình:
i) Đạt giá trị lớn nhất;
ii) Đạt giá trị nhỏ nhất.
Cho phương trình x2-2(m+1)x+m2+2m=0 (1) , (với m là tham số ). Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Ta có: \(\Delta'=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét: \(x_1x_2=m^2+2m\)
Để phương trình có 2 nghiệm trái dấu
\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)
Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)
Gọi n là số các giá trị của tham số m để bất phương trình ( 2 m - 4 ) ( x 3 + 2 x 2 ) + ( m 2 - 3 m + 2 ) - ( m 3 – m 2 - 2 m ) ( x + 2 ) < 0 vô nghiệm. Giá trị của n bằng
A. 5
B. 1
C. 4
D. 2