Cho tập \(X=\left\{6;7;8;9\right\}\). Gọi E là tập hợp tất cả các số tự nhiên có 2018 chữ số được lập từ các chữ số của X. Chọn ngẫu nhiên một số trong tập E. Tính xác suất để số được chọn chia hết cho 3.
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?
\(A = \left\{ {x \in \mathbb{R}|\;{x^2} - 6 = 0} \right\}\);
\(B = \left\{ {x \in \mathbb{Z}|\;{x^2} - 6 = 0} \right\}\)
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\)
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)
Hay \(B = \emptyset \).
Cho tập X. Tập lũy thừa của X, kí hiệu \(P\left(X\right)\) là tập hợp tất cả các tập con của X kể cả chính tập X và tập rỗng. (Ví dụ nếu tập \(X=\left\{1;2;3\right\}\) thì tập \(P\left(X\right)=\left\{\varnothing;\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{2;3\right\};\left\{1;3\right\};X\right\}\))
Chứng minh rằng nếu \(\left|X\right|=n\) thì \(\left|P\left(X\right)\right|=2^n\) với mọi \(n\inℕ\)
(Kí hiệu \(\left|X\right|\) là số phần tử của tập X)
tìm tập xác định của hàm số sau
a) \(y=log_2\left(2x+6\right)\)
b) \(y=log_2\left(x-6\right)\)
c) \(y=log_3\dfrac{1}{2-x}\)
d) \(y=log_2\left(x-6\right)\left(x+2\right)\)
a: ĐKXĐ: 2x+6>0
=>2x>-6
=>x>-2
b: ĐKXĐ: x-6>0
=>x>6
c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)
=>2-x>0
=>x<2
d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)
=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)
Cho tập \(X=\left\{x\in R|x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\right\}\)
a) Tìm m để X có đúng 4 phần tử
b) Tìm m để tập X có hai phần tử
\(x^4-2x^3+\left(m-14\right)x^2+\left(2m+6\right)x-3m+9=0\)
\(\Leftrightarrow x^4-2x^3-14x^2+6x+9+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x-3\right)+m\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-4x+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-3=0\\x^2-4x+m-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x^2-4x+m-3=0\left(1\right)\end{matrix}\right.\)
a/ Tập X có đúng 4 phần tử khi và chỉ khi (1) có 2 nghiệm pb khác 1 và -3
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(m-3\right)>0\\1^2-4.1+m-3\ne0\\\left(-3\right)^2-4.\left(-3\right)+m-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m\ne6\\m\ne-18\end{matrix}\right.\)
b/ Do (1) không thể đồng thời có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) nên X có 2 phần tử khi:
TH1: \(\left(1\right)\) vô nghiệm \(\Leftrightarrow\Delta'< 0\Leftrightarrow m>7\)
TH2: (1) có nghiệm kép \(x=1\) hoặc \(x=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=0\\\left[{}\begin{matrix}-\frac{b}{2a}=1\\-\frac{b}{2a}=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7\\\left[{}\begin{matrix}2=1\\2=-3\end{matrix}\right.\end{matrix}\right.\) (ko có m thỏa mãn)
Vậy \(m>7\)
Bài tập 1: Phân tích đa thức sau thành nhân tử: \(A=\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
Bài tập 2: Cho \(x\in Z\) chứng minh rằng: \(\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)
BÀI TẬP 2:
\(\left(x^{200}+x^{100}+1\right)=x^{100}\left(x^2+1\right)+1\) (1)
\(\left(x^4+x^2+1\right)=x^2\left(x^2+1\right)+1\) (2)
Từ (1) và (2) suy ra:
\(\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)
Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm
a, \(\left(x+m\right)m+x>3x+4\)
\(\Leftrightarrow mx+m^2+x>3x+4\)
\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)
Nếu \(m=0,\) bất phương trình vô nghiệm
Nếu \(m>0\)
\(\left(1\right)\Leftrightarrow x>-m-2\)
\(\Rightarrow x\in\left(-m-2;+\infty\right)\)
\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán
Nếu \(m< 0\)
\(\left(1\right)\Leftrightarrow x< -m-2\)
\(\Rightarrow\) Không thỏa mãn
Vậy \(m>0\)
b, \(m\left(x-m\right)\ge x-1\)
\(\Leftrightarrow mx-m^2\ge x-1\)
\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)
Nếu \(m=1,\) bất phương trình thỏa mãn
Nếu \(m>1\)
\(\left(1\right)\Leftrightarrow x\ge m+1\)
\(\Rightarrow m>1\) không thỏa mãn yêu cầu
Nếu \(m< 1\)
\(\left(1\right)\Leftrightarrow x\le m+1\)
\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán
Vậy \(m< 1\)
c, \(m\left(x-1\right)< 2x-3\)
\(\Leftrightarrow mx-m< 2x-3\)
\(\Leftrightarrow\left(m-2\right)x< m-3\)
Bất phương trình đã cho vô nghiệm khi \(\left\{{}\begin{matrix}m-2=0\\m-3< 0\end{matrix}\right.\Leftrightarrow m=2\)
Vậy yêu cầu bài toán thỏa mãn khi \(m\ne2\)
y = \(\sqrt{9-3\left|x\right|}+\frac{x}{\sqrt{9x^2-1}}\) tập xác định D1
y = \(\frac{\sqrt{x+2}}{x\left|x\right|+2}\) tập xác định D2
Cho \(A=Z\cap\left(D1\cap D2\right)\)
Tìm số pt A
a/ 4 b/ 5 c/ 6 d/ 7
CHo các tập\(X=\left\{x\in R|x^2+4x-2m+10=0\right\}\) và\(Y=\left\{x\in R|x^2+\left(2m-6\right)x-4m+8=0\right\}\)
a) Tìm m để tập X\(\cup\)Y có đúng 4 phần tử
b) Tìm m để tập X\(\cap\) Ycó đúng một phần tử
\(x^2+2\left(m-3\right)x-4m+8=0\) (1)
\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)
Vậy \(Y=\left\{2;-2m+4\right\}\)
Xét pt \(x^2+4x-2m+10=0\left(2\right)\)
a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung
\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)
b/
Để (1) và (2) có (thể có) 2 nghiệm chung
\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
Vậy (1) và (2) luôn có tối đa 1 nghiệm chung
Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)
\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)
TH1: \(x=2\) là nghiệm của (2)
\(\Rightarrow2^2+4.2-2m+10=0\)
\(\Leftrightarrow m=11\)
TH2: \(x=-2m+4\) là nghiệm của (2)
\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)
\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)
Cho hai tập hợp:
\(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\}\)
\(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} \)
Tìm \(A\,{\rm{\backslash }}\,B\) và \(B\,{\rm{\backslash }}\,A\).
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
Cho tập \(A=\left\{-10,-9,-8,-7,-6,-5,-4,......,8,9,10\right\}\)
Hãy cho biết giá trị nào của \(x\) trong tập \(A\) sẽ là nghiệm của bất phương trình :
a) \(\left|x\right|< 3\)
b) \(\left|x\right|>8\)
c) \(\left|x\right|\le4\)
d) \(\left|x\right|\ge7\)
a) x \(\in\) {2;1;0; -1; -2}
b) x \(\in\) {...; -10; -9; 9;10;...}
c) x \(\in\) {-1; -2; -3; -4; 0; 1; 2;3;4}
d) x \(\in\) {...; -9; -8; -7; 7;8;9;...}
![]()
a. Ta có: |x| < 3 ⇔ -3 < x < 3
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-2; -1; 0; 1; 2
b. Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; 9; 10
c. Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4
Các số trong tập hợp A là nghiệm của bất phương trình là:
-4; -3; -2; -1; 0; 1; 2; 3; 4
d. Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7
Các số trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; -8; -7; 7; 8; 9; 10