Cho các số thực x,y,z thoả mãn: x(4y+1)+y(4z+1)+z(4x+1)=9
Tìm GTNN của P=\(x^2+y^2+z^2\)
tìm tập hợp tất cả các bội số của x y z thỏa mãn các điều kiện x=4z^2/1+4z^2, y=4x^2/1+4x^2, z=4y^2/1+4y^2
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
Do xyz=1. nên bđt cần chứng minh tường đương với
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)
Theo BĐT Bunhiacopsky ta có:
\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)
Do vậy ta cần cm
\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)
BĐT trên là tổng của 3 BĐT sau:
\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)
\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)
\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)
ta có bđt trên tương đương với
\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)
Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm
dấu "=" xảy ra khi x=y=z=1
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng 1/x+y + 1/y+z + 1/z+x < 1/4x + 1/4y + 1/4z + 9/4
Cho x, y, z là các số thực thoả mãn điều kiện \(\dfrac{3x^2}{2}\)+ y2 + z2 +yz = 1. Tìm GTNN và GTLN của biểu thức A = x + y + z
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\)
\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)
Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)
\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)
minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)
maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)
\(\)Tìm GTNN √(4x+2√x+1)+√(4y+2√y+1)+√(4z+2√z+1) với x+y+z=12;x,y,z>0
P= \(2\sqrt{x}+1+2\sqrt{y}+1+2\sqrt{z}+1\)
\(P^2=4\left(x+y+z\right)+3\)
với x+y+z=12 ta có\(P^2=4\cdot12+3=51\)
P=\(\sqrt{51}\)
vậy GTLN của p là \(\sqrt{51}\)
Tìm x,y,z thỏa mãn
a)4x-y^2=4y-z^2=4z-x^2=1
b)3x-y^2=3y-z^2=3z-x^2=1
Tìm số thực z,y,z thoả mãn
xy / 2y+4x = yz / 4z+6x = zx/ 6x+2z = x^2+y^2+z^2 / 2^2+4^2+6^2
cho x, y, z > 0 thỏa mãn xyz =1.
CMR: \(P = \dfrac{x^4y}{x^2+1}+\dfrac{y^4z}{y^2+1}+\dfrac{z^4x}{z^2+1} ≥ \dfrac{3}{2} \)