Giải pt:\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
GIẢI CÁC PT SAU:
\(\sqrt{x-1}+\sqrt{3-x}-\sqrt{\left(x-1\right)\left(3-x\right)}=1\)
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
\(a,ĐK:1\le x\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)
Giải pt bằng cách đặt 1 ẩn t:
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế: \(9+2\sqrt{-x^2+9x}=-x^2+9x+9\)
Đặt \(\sqrt{-x^2+9x}=t\ge0\) pt trở thành:
\(t^2-2t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\\x=\dfrac{9-\sqrt{65}}{2}\\x=\dfrac{9+\sqrt{65}}{2}\end{matrix}\right.\)
\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)
giải pt
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a\\\sqrt{x^2-9x+9}=b\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}a+b=2x\\9a^2-b^2=8x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2x-a\\9a^2-b^2=8x^2\end{matrix}\right.\)
\(\Leftrightarrow9a^2-\left(2x-a\right)^2-8x^2=0\)
\(\Leftrightarrow2a^2+ax-3x^2=0\Leftrightarrow\left(a-x\right)\left(2a+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=x\left(x\ge0\right)\\2\sqrt{x^2-x+1}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=x^2\\-5x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2-2\sqrt{6}}{5}\end{matrix}\right.\)
giải pt
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\left(x\text{ ≥}1\right)\)
⇔ \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
⇔ \(-\sqrt{x-1}=-17\)
⇔ \(x=290\left(TM\right)\)
KL..................
Giải pt \(3\sqrt{5x-1}-9\sqrt{9x+7}=2\sqrt{x+2}\)
giúp vs ạ!!!!!!!!!!!!!!!!!!!!
ĐK: \(x\ge\frac{1}{5}\)
bạn chuyển vế rồi bình phương
Giải pt \(3\sqrt{5x-1}-\sqrt{9x+7}=2\sqrt{x+2}\)
giúp vs ạ!!!!!!!!!!!!!!!!!!!!
Giải pt : \(\sqrt{x+5}=\sqrt[3]{9x-9}\)
ĐKXĐ : \(x\ge-5\)
Lập phương 2 vế ta được :
\(\sqrt{\left(x+5\right)^3}=9x-9\)
Đặt \(\sqrt{x+5}=a\) . Phương trình trở thành :
\(a^3=9\left(a^2-6\right)\)
\(\Leftrightarrow a^3-9a^2+54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a_1=3\\a_2=3+3\sqrt{3}\\a_3=3-3\sqrt{3}\end{matrix}\right.\)
Với \(a=3\) : \(\Leftrightarrow\sqrt{x+5}=3\Leftrightarrow x+5=9\Leftrightarrow x=4\)
Với \(a=3+3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3+3\sqrt{3}\Leftrightarrow x+5=9+18\sqrt{3}+27\Leftrightarrow x=31+18\sqrt{3}\)
Với \(a=3-3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3-3\sqrt{3}\Rightarrow a\in\varnothing\)
Giải pt \(3\sqrt{5x-1}-9\sqrt{9x+7}=2\sqrt{x+2}\)
giúp vs ạ!!!!!!!!!!!!!!!!!!!!
\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)giải hộ mik pt này
\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(2\sqrt{x-5}=4\)
\(\sqrt{x-5}=2\)
\(\left\{{}\begin{matrix}2>0\left(luondung\right)\\x-5=4\end{matrix}\right.\)\(\Rightarrow x=9\left(tm\right)\)
Giải pt : \(\sqrt{x+5}=\sqrt[3]{9x-9}\)