ĐKXĐ : \(x\ge-5\)
Lập phương 2 vế ta được :
\(\sqrt{\left(x+5\right)^3}=9x-9\)
Đặt \(\sqrt{x+5}=a\) . Phương trình trở thành :
\(a^3=9\left(a^2-6\right)\)
\(\Leftrightarrow a^3-9a^2+54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a_1=3\\a_2=3+3\sqrt{3}\\a_3=3-3\sqrt{3}\end{matrix}\right.\)
Với \(a=3\) : \(\Leftrightarrow\sqrt{x+5}=3\Leftrightarrow x+5=9\Leftrightarrow x=4\)
Với \(a=3+3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3+3\sqrt{3}\Leftrightarrow x+5=9+18\sqrt{3}+27\Leftrightarrow x=31+18\sqrt{3}\)
Với \(a=3-3\sqrt{3}\Leftrightarrow\sqrt{x+5}=3-3\sqrt{3}\Rightarrow a\in\varnothing\)