Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miền Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 21:08

Ta có:

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)

\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Quynh Existn
Xem chi tiết
missing you =
10 tháng 7 2021 lúc 10:19

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:31

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

Minh Anh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

Phạm Long Khánh
Xem chi tiết
illumina
Xem chi tiết
2611
20 tháng 5 2023 lúc 20:12

`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12`     `ĐK: x >= 0`

`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`

`<=>12\sqrt{3x}=12`

`<=>\sqrt{3x}=1`

`<=>3x=1<=>x=1/3` (t/m)

`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36`   `ĐK: x >= -1`

`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`

`<=>12\sqrt{x+1}=36`

`<=>\sqrt{x+1}=3`

`<=>x+1=9`

`<=>x=8` (t/m)

Tùng Nguyễn
Xem chi tiết
Phạm An Khánh
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2022 lúc 1:23

ĐKXĐ: \(2\le x\le5\)

\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)

\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)

\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)

Quandung Le
Xem chi tiết
Mất nick đau lòng con qu...
25 tháng 8 2019 lúc 16:09

\(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^2-2x+1\right)+25}\ge\sqrt{9}+\sqrt{25}=8\)

Do dấu "=" ko đồng thời xảy ra ở hai bđt nên pt vô nghiệm 

Bui Huyen
25 tháng 8 2019 lúc 20:45

\(\sqrt{3\left(x+1\right)^2+9}-3+\sqrt{5\left(x^2-1\right)^2+25}-5=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x+1\right)^2\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)=0\)

\(\left(\frac{3}{\sqrt{3\left(x+2\right)^2+9}+3}+\frac{5\left(x-1\right)^2}{\sqrt{5\left(x^2-1\right)^2+25}+5}\right)>0\left(\forall x\right)\)

\(\Rightarrow x=-1\)

Bạn kia làm sai rùi ạ chắc nhìn nhầm đề 

Bùi Thị Thùy Linh
Xem chi tiết