Giải pt
\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+5x-2\right)\)
giải pt
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
(x - 1)^3 - x(x + 1)^2 = 5x(2 - x) - 11(x + 2)
<=> -5x^2 + 2x - 1 = -5x2 - x - 22
<=> 2x - 1 = -5x2 - x - 22 + 5x2
<=> 2x - 1 = -x - 22
<=> 2x - 1 + x = -22
<=> 3x - 1 = -22
<=> 3x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy: phương trình có nghiệm duy nhất là: S = {-7}
giải pt :
a,\(\left(\sqrt{5x-1}+\sqrt{x-1}\right)\left(3x-1-\sqrt{5x^2-6x+1}\right)=4x\)
b,\(2\left(\sqrt{x}-\sqrt{x-1}\right)\left(1+\sqrt{x^2-1}\right)=x\sqrt{x}\)
a, ĐK: \(x\ge1\)
Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)
\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)
TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)
TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)
\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)
\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)
\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)
\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
giải pt \(\left(x+1\right)\left(2\sqrt{x^2+3}-x^2\right)+\sqrt[3]{3x^2+5}=5x+3\)
giải pt:
a. \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
b, \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
giải pt \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
giải PT : \(2\left(5x^2+2\right)+3\left(x^2-2x\right)\sqrt{3x-1}=2\left(x^3+7x\right)\)
ĐKXĐ: bla bla bla
\(3x\left(x-2\right)\sqrt{3x-1}=2\left(x^3-5x^2+7x-2\right)\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{3x-1}=2\left(x-2\right)\left(x^2-3x+1\right)\)
TH1: \(x=2\)
TH2: \(3x\sqrt{3x-1}=2\left(x^2-3x+1\right)\)
Đặt \(\sqrt{3x-1}=t\ge0\)
\(\Rightarrow3tx=2\left(x^2-t^2\right)\)
\(\Leftrightarrow2x^2-3tx-2t^2=0\)
\(\Leftrightarrow\left(2x+t\right)\left(x-2t\right)=0\)
\(\Rightarrow x=2t\)
\(\Leftrightarrow x=2\sqrt{3x-1}\)
\(\Leftrightarrow x^2=4\left(3x-1\right)\)
\(\Leftrightarrow x^2-12x+4=0\)
Giải pt: \(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\dfrac{5+96}{x^2-16}=\dfrac{2x—1}{x+4}-\dfrac{3x-1}{4-x}\)
a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)
Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)
Suy ra: \(9-3x+10x-2=4\)
\(\Leftrightarrow7x+7=4\)
\(\Leftrightarrow7x=-3\)
hay \(x=-\dfrac{3}{7}\)
Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)
giải pt
a) \(\left|x^2-5x-4\right|=\left|x^2-4\right|\)
b) \(\left|x-1\right|+3\left|x-3\right|=6\)
c) \(\left|\frac{x^2-6x-4}{x^2-4}\right|=1\)
d) \(\left|x-1\right|-2\left|x-2\right|=x^2-x-3\)
a/
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)
b/ - Với \(x\ge3\) pt trở thành:
\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)
- Với \(x\le1\) pt trở thành:
\(1-x+3\left(3-x\right)=6\)
\(\Leftrightarrow x=1\)
- Với \(1< x< 3\) pt trở thành:
\(x-1+3\left(3-x\right)=6\)
\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)
c/ ĐKXĐ: \(x\ne\pm2\)
\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)
d/ - Với \(x\ge2\) pt trở thành:
\(x-1-2\left(x-2\right)=x^2-x-3\)
\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x\le1\) pt trở thành:
\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự
- Với \(1< x< 2\):
\(x-1-2\left(2-x\right)=x^2-x-3\)