Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yên Nông Thị
Xem chi tiết
Kiệt Nguyễn
15 tháng 4 2020 lúc 8:45

\(ĐK:x\ge-8\)

\(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow x+8-3x\sqrt{x+8}-\left(x+2\right)\sqrt{x+8}+3x\left(x+2\right)=0\)

\(\Leftrightarrow\sqrt{x+8}\left(\sqrt{x+8}-3x\right)-\left(x+2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+8}-x-2\right)\left(\sqrt{x+8}-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+8}=x+2\left(1\right)\\\sqrt{x+8}=3x\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x+8=x^2+4x+4\Leftrightarrow x^2+3x-4=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-4\left(L\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow9x^2-x-8=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{-8}{9}\left(L\right)\end{cases}}\)

Vậy nghiệm duy nhất của phương trình là 1

Khách vãng lai đã xóa
Thanh Tùng DZ
15 tháng 4 2020 lúc 8:50

ĐKXĐ : x \(\ge\)-8

PT đã cho tương đương với :

\(2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)\sqrt{x+8}+x+8-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x+2-\sqrt{x+8}\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2-\sqrt{x+8}=0\\3x-\sqrt{x+8}=0\end{cases}}\)

Từ đó giải ra x = 1 thỏa mãn đề bài

Khách vãng lai đã xóa
Nguyễn Phương Anh
15 tháng 4 2020 lúc 8:45

giúp mình giải câu đấy nữa

Khách vãng lai đã xóa
vũ tiền châu
Xem chi tiết
Thắng Nguyễn
12 tháng 8 2017 lúc 21:48

câu 2 đề sai

Vu Nguyen Minh Khiem
12 tháng 8 2017 lúc 22:06

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

Vũ Đoàn
12 tháng 8 2017 lúc 22:28

bài 1 chắc bạn sai đề. Mình lười lắm nên link đây nhé https://diendantoanhoc.net/topic/96618-sqrtx8frac3x27x84x2/

Nguyễn Thanh
Xem chi tiết
๖ACE✪Hoàngミ★Việtツ
5 tháng 8 2017 lúc 15:37

\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)

\(\Leftrightarrow x=7\)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

Vũ Huy Hiệu
5 tháng 8 2017 lúc 17:06

 (x−1)(√3x+4−1)=3(x+1)  ⇔x=7

tk mk nha

Thắng Nguyễn
5 tháng 8 2017 lúc 20:53

a)\(\left(x-1\right)\left(\sqrt{3x+4}-1\right)=3\left(x+1\right)\)

ĐK:\(x\ge-\frac{4}{3}\)

\(pt\Leftrightarrow\left(x-1\right)\sqrt{3x+4}-\left(x-1\right)=3\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\sqrt{3x+4}-\left(4x+2\right)=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2\left(3x+4\right)-\left(4x+2\right)^2}{\left(x-1\right)\sqrt{3x+4}+4x+2}=0\)

\(\Leftrightarrow\frac{3x^3-18x^2-21x}{\left(x-1\right)\sqrt{3x+4}+4x+2}=0\)

\(\Leftrightarrow\frac{3x\left(x-7\right)\left(x+1\right)}{\left(x-1\right)\sqrt{3x+4}+4x+2}=0\)

\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

c)\(\sqrt{x+8}=\frac{3x^2+7x+8}{4x+2}\)

\(pt\Leftrightarrow\sqrt{x+8}-3=\frac{3x^2+7x+8}{4x+2}-3\)

\(\Leftrightarrow\frac{x+8-9}{\sqrt{x+8}+3}=\frac{3x^2-5x+2}{4x+2}\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x+8}+3}-\frac{\left(x-1\right)\left(3x-2\right)}{4x+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+8}+3}-\frac{3x-2}{4x+2}\right)=0\)

Suy ra x=1

Ngọc Anh Nguyễn
Xem chi tiết
Vũ Thảo Vy
Xem chi tiết
Incursion_03
1 tháng 4 2019 lúc 15:19

Nhận thấy pt có 1 nghiệm là 1 nên ta sẽ nhân liên hợp =))

\(ĐKXĐ:x\ge-8\)

\(pt\Leftrightarrow\left(4x+2\right)\left(\sqrt{x+8}-3\right)+3\left(4x+2\right)=3x^2+7x+8\)

   \(\Leftrightarrow\left(4x+2\right).\frac{x+8-9}{\sqrt{x+8}+3}=3x^2-5x+2\)

  \(\Leftrightarrow\frac{\left(4x+2\right)\left(x-1\right)}{\sqrt{x+8}+3}=\left(3x-2\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+2}{\sqrt{x+8}+3}-3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\frac{4x+2}{\sqrt{x+8}+3}=3x-2\left(1\right)\end{cases}}\)

Giải (1) ta có :

 \(\left(1\right)\Leftrightarrow4x+2=\left(3x-2\right)\left(\sqrt{x+8}+3\right)\)

        \(\Leftrightarrow4x+2=\left(3x-2\right)\sqrt{x+8}+3\left(3x-2\right)\)

        \(\Leftrightarrow-5x+8=\left(3x-2\right)\sqrt{x+8}\)(pt này lại có 1 nghiệm bằng 1 nên lại liên hợp ^^)

      \(\Leftrightarrow-5x+8=\left(3x-2\right)\left(\sqrt{x+8}-3\right)+3\left(3x-2\right)\)

      \(\Leftrightarrow-14x+14=\left(3x-2\right).\frac{x+8-9}{\sqrt{x+8}+3}\)

     \(\Leftrightarrow-14\left(x-1\right)=\frac{\left(3x-2\right)\left(x-1\right)}{\sqrt{x+8}+3}\)

    \(\Leftrightarrow\left(x-1\right)\left(\frac{3x-2}{\sqrt{x+8}+3}+14\right)=0\)

Vì x > -8 nên \(\frac{3x-2}{\sqrt{x+8}+3}+14>0\)

Khi đó x - 1 = 0 <=> x = 1

Vậy pt có nghiệm duy nhất x = 1

                               

Nguyễn Nguyên
Xem chi tiết
Trần Minh Hoàng
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Trần Minh Hoàng
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Sofia Nàng
Xem chi tiết
Nyatmax
25 tháng 9 2019 lúc 12:11

\(DK:x\ge-\frac{1}{3}\)

\(\Leftrightarrow\frac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}\left(\sqrt{3x^2+7x+2}+4\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(1\right)\\\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}=2\left(2\right)\end{cases}}\)

Xet PT(2)

Dat \(\hept{\begin{cases}\sqrt{3x+1}=a\\\sqrt{x+2}=b\end{cases}\left(a,b\ge0\right)}\)

PT(2)\(\Leftrightarrow\frac{ab+4}{a+b}=2\)

\(\Leftrightarrow2a+2b-ab-4=0\)

\(\Leftrightarrow\left(a+2\right)\left(2-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(3\right)\\b=2\left(4\right)\end{cases}}\)

Xet PT(3)

Ta co:\(a\ge0\)

Nen PT vo nghiem

Xet PT (4)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=2\)

Vay PT co 2 nghiem la \(x_1=\frac{1}{2};x_2=2\)

Trang Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 6 2021 lúc 21:11

Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)

Thay x=-1 vào pt thấy thỏa mãn

Vậy pt có nghiệm duy nhất x=-1

Yeutoanhoc
7 tháng 6 2021 lúc 23:10

Bài làm sai rồi.

\(x=5\) vẫn thỏa mãn.

Nguyễn Thị Bình Yên
Xem chi tiết
Akai Haruma
12 tháng 1 2019 lúc 17:28

Câu 1:

ĐK: \(x\geq -8\)

Đặt \(\sqrt{x+8}=a(a\geq 0)\) thì pt tương đương với:

\((4x+2)a=3x^2+6x+(x+8)=3x^2+6x+a^2\)

\(\Leftrightarrow 3x^2+6x+a^2-4ax-2a=0\)

\(\Leftrightarrow (4x^2-4ax+a^2)-x^2+6x-2a=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)-x^2+2x=0\)

\(\Leftrightarrow (2x-a)^2+2(2x-a)+1-(x^2-2x+1)=0\)

\(\Leftrightarrow (2x-a+1)^2-(x-1)^2=0\)

\(\Leftrightarrow (x-a+2)(3x-a)=0\)

\(\bullet \)Nếu \(x-a+2=0\Leftrightarrow x+2=a\Rightarrow (x+2)^2=a^2=x+8\)

\(\Leftrightarrow x^2+3x+4=0\Rightarrow \left[\begin{matrix} x=1\\ x=-4\end{matrix}\right.\) . Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-4$ bị loại vì $x+2=a\geq 0$

\(\bullet \) Nếu \(3x-a=0\Rightarrow 3x=a\Rightarrow 9x^2=a^2=x+8\)

\(\Leftrightarrow 9x^2-x-8=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-8}{9}\end{matrix}\right.\). Ở đây chỉ có TH $x=1$ thỏa mãn còn $x=-\frac{8}{9}$ loại vì \(9x=a\geq 0\rightarrow x\geq 0\)

Vậy PT có nghiệm duy nhất $x=1$

Akai Haruma
12 tháng 1 2019 lúc 17:36

Câu 2:
ĐK: \(x\geq \frac{-1}{3}\)

Đặt \(\sqrt{3x+1}=a(a\geq 0)\). Khi đó pt đã cho tương đương với:

\(x^2+x+(3x+1)-2x\sqrt{3x+1}=\sqrt{3x+1}\)

\(\Leftrightarrow x^2+x+a^2-2ax=a\)

\(\Leftrightarrow (x^2+a^2-2ax)+(x-a)=0\)

\(\Leftrightarrow (x-a)^2+(x-a)=0\Leftrightarrow (x-a)(x-a+1)=0\)

\(\Rightarrow \left[\begin{matrix} x=a\\ x+1=a\end{matrix}\right.\)

Nếu \(x=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2=3x+1\end{matrix}\right.\Rightarrow x=\frac{3+\sqrt{13}}{2}\) (t/m)

Nếu \(x+1=a=\sqrt{3x+1}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=3x+1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ x^2-x=0\end{matrix}\right.\)

\(\Rightarrow x=0\) hoặc $x=1$

Vậy.........

Akai Haruma
12 tháng 1 2019 lúc 17:44

Câu 3:

Đặt \(\sqrt{x^2+3}=a(a\geq 0)\)

PT đã cho tương đương với:

\((x^2+3)+2x^2+2x=(3x+1)\sqrt{x^2+3}\)

\(\Leftrightarrow a^2+2x^2+2x=(3x+1)a\)

\(\Leftrightarrow a^2+2x^2+2x-3ax-a=0\)

\(\Leftrightarrow (a^2+4x^2-4ax)+2x-a-2x^2+ax=0\)

\(\Leftrightarrow (a-2x)^2-(a-2x)+x(a-2x)=0\)

\(\Leftrightarrow (a-2x)(a-x-1)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ a=x+1\end{matrix}\right.\)

Nếu \(2x=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq 0\\ 4x^2=x^2+3\end{matrix}\right.\Rightarrow x=1\) (t/m)

Nếu \(x+1=a=\sqrt{x^2+3}\Rightarrow \left\{\begin{matrix} x\geq -1\\ (x+1)^2=x^2+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -1\\ 2x=2\end{matrix}\right.\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất $x=1$