Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

Giải phương trình: \(\sqrt{x^2-1}-\sqrt{3x^2+4x+1}=\left(8-2x\right)\sqrt{x+1}\)

Lê Thị Thục Hiền
4 tháng 6 2021 lúc 21:11

Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)

Thay x=-1 vào pt thấy thỏa mãn

Vậy pt có nghiệm duy nhất x=-1

Yeutoanhoc
7 tháng 6 2021 lúc 23:10

Bài làm sai rồi.

\(x=5\) vẫn thỏa mãn.


Các câu hỏi tương tự
Nguyễn Tuấn Khoa
Xem chi tiết
Uchiha Itachi
Xem chi tiết
HT.Phong (9A5)
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Đức Anh Lê
Xem chi tiết
ffff
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Đỗ Quyên
Xem chi tiết
Anh Quynh
Xem chi tiết